Developing an astrophysical line list for Keck/Nirspec observations of red giants in the Galactic centre

2017 ◽  
Vol 13 (S334) ◽  
pp. 372-373 ◽  
Author(s):  
B. Thorsbro ◽  
N. Ryde ◽  
R. M. Rich ◽  
M. Schultheis ◽  
T. K. Fritz ◽  
...  

AbstractA major avenue in the study of the Galaxy is the investigation of stellar populations and Galactic chemical evolution by stellar spectroscopy. Due to the dust obscuration, stars in the centre of the Galaxy can only be observed in the near-IR wavelength region. However, existing line lists in this wavelength region are demonstratively not of good enough quality for use in stellar spectroscopy. In response to this, we have developed an empirical astrophysical line list in the K-band based on modelling against the Sun and testing against Arcturus. Of ca. 700 identified interesting lines about 570 lines have been assigned empirically determined values.

2000 ◽  
Vol 198 ◽  
pp. 540-546 ◽  
Author(s):  
Cristina Chiappini ◽  
Francesca Matteucci

In this work we present the predictions of a modified version of the ‘two-infall model’ (Chiappini et al. 1997 - CMG) for the evolution of 3He, 4He and D in the solar vicinity, as well as their distributions along the Galactic disk. In particular, we show that when allowing for extra-mixing process in low mass stars (M < 2.5 M⊙), as predicted by Charbonnel and do Nascimento (1998), a long standing problem in chemical evolution is solved, namely: the overproduction of 3He by the chemical evolution models as compared to the observed values in the sun and in the interstellar medium. Moreover, we show that chemical evolution models can constrain the primordial value of the deuterium abundance and that a value of (D/H)p < 3 × 10—5 is suggested by the present model. Finally, adopting the primordial 4He abundance suggested by Viegas et al. (1999), we obtain a value for ΔY/ΔZ ≃ 2 and a better agreement with the solar 4He abundance.


1984 ◽  
Vol 78 ◽  
pp. 257-260
Author(s):  
K. Ishida

AbstractStellar content contributing to near IR radiation do not show radial differentiation in the Galaxy. Late-type giants and supergiants supply about 70% of the total volume emissivity at the K band, in the solar vicinity within 1 kpc, and also at the distance of several kpc in the Scutum region.


1978 ◽  
Vol 80 ◽  
pp. 273-276
Author(s):  
Sidney van den Bergh

A quarter of a century ago Keenan and Keller (1953) showed that the majority of high-velocity stars near the Sun outline a Hertzsprung-Russell diagram similar to that of old Population I. This result, which did not appear to fit into Baade's (1944) two-population model of the Galaxy was ignored (except by Roman 1965) for the next two decades. Striking confirmation of the results of Keenan and Keller was, however, obtained by Hartwick and Hesser (1972). Their work appears to show that high-velocity field stars with an ultraviolet excess (which measures Fe/H) of δ(U-B) ≃ +0m.11 lie on a red giant branch that is more than a magnitude fainter than the giant branch of the strong-lined globular cluster 47 Tuc for which δ(U-B) ≃ +0m.10. Furthermore Demarque and McClure (1977) show that the red giants in the old metal poor [δ(U-B) ≃ +0m.11] open cluster NGC 2420 are significantly fainter than are those in 47 Tuc. Calculations by these authors show that the observed differences between the giants in 47 Tuc and in NGC 2420 can be explained if either (1) 47 Tuc is richer in helium than NGC 2420 by ΔY ≃ 0.1 or (2) if 47 Tuc has a ten times lower value of Z(CNO) than does NGC 2420.


1976 ◽  
Vol 72 ◽  
pp. 183-204
Author(s):  
H. Spinrad

Stellar abundances are reviewed with emphasis on large-scale effects which may yield clues to galactic structure and evolution. Spectroscopic and indirect photoelectric abundance criteria are discussed, and utilized.The abundance statistics of nearby galactic disk stars, dominated by M dwarfs, but observed at spectral types F and GV and K III, suggest a weak age-abundance relationship with a substantial dispersion at any time. Very metal-poor stars are extremely rare. Spatial abundance gradients, with higher metal abundances occurring nearer the galactic centre, are indicated. Disk abundance gradients are prevalent for light elements in other Sb and Sc galaxies.The confusing status of supermetallicity is again reviewed. The super-metal-rich (SMR) giants (like μ Leo) are either over-abundant because of self-N-enrichment (from C–N–O processing?)and boundary-temperature cooling, or are really SMR. Each case may be reasonably argued. The old galactic clusters M67 and NGC 183 seem, by recent indirect acclaim, to be only slightly more metal-rich than the Sun. The Spinrad-Taylor data on the M67 giants would still seem to superficially suggest overabundances in Na and Mg, but other interpretations are possible.SMR dwarfs, like HR 72, and subgiants, like 31 Aql are surely very old, and have metal abundances larger than the Hyades. However, they are, by number, only ≈ 5% of the local main sequence.The galactic halo star tracers – red giants and RR Lyrae stars, have been observed extensively, lately. There is some indication of an abundance gradient from 5 or 10 kpc galactocentric radius out to r ~ 100 kpc. The most metal-poor stars observed in the Draco system are about 1000 times less abundant in heavy elements than is the Sun, and much of the galactic disk.Abundances in other galaxies, as a function of their total mass, and stellar/gaseous composition are also reviewed. There is a clear dependence of abundance on galaxian total mass.


1992 ◽  
Vol 150 ◽  
pp. 193-197
Author(s):  
W. D. Langer

Isotopic molecular abundances are used to interpret Galactic chemical evolution and the properties of interstellar clouds. The isotopic chemistry of carbon plays an important role in the interpretation of these measurements. This paper reviews the recent measurements of the carbon twelve to thirteen ratio across the Galaxy and the isotopic chemistry.


2022 ◽  
Vol 924 (1) ◽  
pp. 29
Author(s):  
Hirokazu Sasaki ◽  
Yuta Yamazaki ◽  
Toshitaka Kajino ◽  
Motohiko Kusakabe ◽  
Takehito Hayakawa ◽  
...  

Abstract We calculate the Galactic Chemical Evolution of Mo and Ru by taking into account the contribution from ν p-process nucleosynthesis. We estimate yields of p-nuclei such as 92,94Mo and 96,98Ru through the ν p-process in various supernova progenitors based upon recent models. In particular, the ν p-process in energetic hypernovae produces a large amount of p-nuclei compared to the yield in ordinary core-collapse SNe. Because of this, the abundances of 92,94Mo and 96,98Ru in the Galaxy are significantly enhanced at [Fe/H] = 0 by the ν p-process. We find that the ν p-process in hypernovae is the main contributor to the elemental abundance of 92Mo at low metallicity [Fe/H] < −2. Our theoretical prediction of the elemental abundances in metal-poor stars becomes more consistent with observational data when the ν p-process in hypernovae is taken into account.


2000 ◽  
Vol 198 ◽  
pp. 141-150 ◽  
Author(s):  
Jeffrey L. Linsky ◽  
Brian E. Wood

Accurate measurements of the D/H ratio in our Galaxy provide critical tests of Galactic chemical evolution and constrain the primordial value of D/H. Very high quality ultraviolet spectra from the GHRS and STIS instruments on HST have been analyzed for lines of sight toward both early and late-type stars and hot white dwarfs. We will summarize the results that are being obtained for D/H along sightlines through the Local Interstellar Cloud (LIC) and other nearby warm clouds. All sightlines through the LIC are consistent with D/H = (1.53 ± 0.18) × 10−5. Whether or not significantly different values of D/H are present in other clouds within 100 pc of the Sun is not yet settled, but there is evidence that D/H is significantly lower in Orion (500 pc). We will describe the likely sources of systematic errors in determining D/H that must be understood and quantified when analyzing such ultraviolet spectra.


1957 ◽  
Vol 4 ◽  
pp. 37-41
Author(s):  
M. Schmidt

The determination of the distribution of hydrogen from 21-cm. observations in parts of the Galaxy, which are nearer to the centre than the sun, is seriously handicapped by the fact that the observed radial velocity of the hydrogen clouds determines only the distance to the galactic centre. So two possible values of the distance to the sun correspond to one value of the frequency. We have used as a criterion to separate the contributions from the two regions the latitude distribution of the radiation.


2017 ◽  
Vol 13 (S334) ◽  
pp. 376-377
Author(s):  
Marcelo Tucci Maia

AbstractSolar twins are a special group of stars that have spectra and stellar parameters very close to the Sun. Also having mass around 1 solar mass and roughly solar chemical composition, these stars follow a similar evolutionary path to the Sun, from the zero age main sequence to the end of their lives. Additional to that, the similarity between themselves permit us to obtain high-precision differential abundance and thus, very precise atmospheric parameters that allows a reliable estimation of their ages using the traditional isochronal method. Taking advantage of this very restrict group of stars we can better understand the effects of nucleosynthesis of chemical elements throughout the Galaxy and with this, finding constrains for its evolution.


Sign in / Sign up

Export Citation Format

Share Document