HI gas component in dwarf and disk galaxies in the view of semi-analytic models

2018 ◽  
Vol 14 (S344) ◽  
pp. 274-275
Author(s):  
Jian Fu

AbstractWe show our recent progress on the L-Galaxies semi-analytic models of galaxy formation, which focuses on the HI gas in low mass galaxies. We find that the model based on ELUCID haloes can reproduce the HI mass function from ALFALFA 100 at low mass end. On the other hand, our models predict some gas rich low mass galaxies around the Milky Way, which may offer opportunities for future HI 21cm survey in nearby universe by FAST and SKA-1.

2004 ◽  
Vol 21 (2) ◽  
pp. 144-147 ◽  
Author(s):  
L. Portinari ◽  
J. Sommer-Larsen ◽  
R. Tantalo

AbstractCosmological simulations of disk galaxy formation, when compared to the observed Tully–Fisher relation, suggest a low mass to light (M/L) ratio for the stellar component in spirals. We show that a number of 'bottom-light' initial mass functions (IMFs) suggested independently in the literature, do imply M/L ratios as low as required, at least for late type spirals (Sbc–Sc). However the typical M/L ratio, and correspondingly the zero point of the Tully–Fisher relation, is expected to vary considerably with Hubble type.Bottom-light IMFs tend to have a metal production in excess of what is typically estimated for spiral galaxies. Suitable tuning of the IMF slope and mass limits, post-supernova fallback of metals onto black holes or metal outflows must then be invoked, to reproduce the observed chemical properties of disk galaxies.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Dennis Zaritsky

Galaxy scaling relations, which describe a connection between ostensibly unrelated physical characteristics, testify to an underlying order in galaxy formation that requires understanding. I review the development of a scaling relation that (1) unites the well-known fundamental plane (FP) relation of giant elliptical galaxies and Tully-Fisher (TF) relation of disk galaxies, (2) fits low mass spheroidal galaxies, including the ultrafaint satellites of our galaxy, (3) explains the apparent shift of lenticular galaxies relative to both FP or TF, (4) describes all stellar dynamical systems, including systems with no dark matter (stellar clusters), (5) associates explicitly the numerical coefficients that account for the apparent tilt of the FP away from the expectation drawn from the virial theorem with variations in the total mass-to-light ratio of galaxies within the half-light radius, (6) connects with results that demonstrate the robustness of mass estimators when applied at the half-light radius, and (7) results in smaller scatter for disk galaxies than the TF relation. I review two applications: (1) the cross-calibration of distance measurement methods and (2) the determination of mass-to-light ratios of simple stellar populations and implications for the stellar initial mass function.


1995 ◽  
Vol 164 ◽  
pp. 133-149
Author(s):  
Rosemary F.G. Wyse

The Milky Way Galaxy offers a unique opportunity for testing theories of galaxy formation and evolution. The study of the spatial distribution, kinematics and chemical abundances of stars in the Milky Way Galaxy allows one to address specific questions pertinent to this meeting such as (i)When was the Galaxy assembled? Is this an ongoing process? What was the merging history of the Milky Way?(ii)When did star formation occur in what is now “The Milky Way Galaxy”? Where did the star formation occur then? What was the stellar Initial Mass Function?(iii)How much dissipation of energy was there before and during the formation of the different stellar components of the Galaxy?(iv)What are the relationships among the different stellar components of the Galaxy?(v)Was angular momentum conserved during formation of the disk(s) of the Galaxy?(vi)What is the shape of the dark halo?(vii)Is there dissipative (disk) dark matter?


2003 ◽  
Vol 208 ◽  
pp. 283-294
Author(s):  
Matthias Steinmetz

I review recent progress in numerically simulating the formation and evolution of galaxies in hierarchically clustering universes. Special emphasis is given to results based on high-resolution gas dynamical simulations using the N-body hardware integrator GRAPE. Applications address the origin of the spin of disk galaxies, the structure and kinematics of damped Ly-α systems, and the origin of galaxy morphology and of galaxy scaling laws.


2019 ◽  
Vol 15 (S352) ◽  
pp. 347-347
Author(s):  
Susan Kassin

AbstractOne of the most important open issues in astronomy is the assembly of galactic disks. Over the last decade this has been addressed with large surveys of the internal kinematics of galaxies spanning the last 10 billion years of the universe. I will discuss recent results from the field that show the kinematic assembly of disk galaxies since a redshift of 2.5, including recent deep 10–30 hour observations by my group with the DEIMOS spectrograph on Keck. These results strongly challenge traditional analytic models of galaxy formation and provide an important benchmark for simulations. Furthermore, I will discuss our plans for extending measurements to higher redshifts with future instruments such as the JWST's NIRSpec IFU and the E-ELT's MOSAIC and HARMONI IFUs. From mock JWST and E-ELT observations of simulated galaxies, we are learning that interpreting these observations of galaxies in the early universe, when merging is frequent, is not necessarily straightforward.


2019 ◽  
Vol 492 (4) ◽  
pp. 5780-5793 ◽  
Author(s):  
Jack Richings ◽  
Carlos Frenk ◽  
Adrian Jenkins ◽  
Andrew Robertson ◽  
Azadeh Fattahi ◽  
...  

ABSTRACT N-body simulations make unambiguous predictions for the abundance of substructures within dark matter haloes. However, the inclusion of baryons in the simulations changes the picture because processes associated with the presence of a large galaxy in the halo can destroy subhaloes and substantially alter the mass function and velocity distribution of subhaloes. We compare the effect of galaxy formation on subhalo populations in two state-of-the-art sets of hydrodynamical Λcold dark matter (ΛCDM) simulations of Milky Way mass haloes, Apostle and Auriga. We introduce a new method for tracking the orbits of subhaloes between simulation snapshots that gives accurate results down to a few kiloparsecs from the centre of the halo. Relative to a dark matter-only simulation, the abundance of subhaloes in Apostle is reduced by 50 per cent near the centre and by 10 per cent within r200. In Auriga, the corresponding numbers are 80 per cent and 40 per cent. The velocity distributions of subhaloes are also affected by the presence of the galaxy, much more so in Auriga than in Apostle. The differences on subhalo properties in the two simulations can be traced back to the mass of the central galaxies, which in Auriga are typically twice as massive as those in Apostle. We show that some of the results from previous studies are inaccurate due to systematic errors in the modelling of subhalo orbits near the centre of haloes.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 195-196
Author(s):  
Stéphane Courteau ◽  
Aaron A. Dutton

AbstractWe present the relative fraction of baryons and dark matter at various radii in galaxies. For spiral galaxies, this fraction measured in a galaxy's inner parts is typically baryon-dominated (maximal) and dark-matter dominated (sub-maximal) in the outskirts. The transition from maximal to sub-maximal baryons occurs within the inner parts of low-mass disk galaxies (with Vtot ≤ 200 km s−1) and in the outer disk for more massive systems. The mean mass fractions for late- and early-type galaxies vary significantly at the same fiducial radius and circular velocity, suggesting a range of galaxy formation mechanisms. A more detailed discussion, and resolution of the so-called “maximal disk problem”, is presented in Courteau & Dutton, ApJL, 801, 20.


2014 ◽  
Vol 10 (S309) ◽  
pp. 145-148 ◽  
Author(s):  
Rhea-Silvia Remus ◽  
Klaus Dolag ◽  
Lisa K. Bachmann ◽  
Alexander M. Beck ◽  
Andreas Burkert ◽  
...  

AbstractWe presentMagneticum Pathfinder, a new set of hydrodynamical cosmological simulations covering a large range of cosmological scales. Among the important physical processes included in the simulations are the chemical and thermodynamical evolution of the diffuse gas as well as the evolution of stars and black holes and the corresponding feedback channels. In the high resolution boxes aimed at studies of galaxy formation and evolution, populations of both disk and spheroidal galaxies are self-consistently reproduced. These galaxy populations match the observed stellar mass function and show the same trends for disks and spheroids in the mass–size relation as observations from the SDSS. Additionally, we demonstrate that the simulated galaxies successfully reproduce the observed specific angular-momentum–mass relations for the two different morphological types of galaxies. In summary, theMagneticum Pathfindersimulations are a valuable tool for studying the assembly of cosmic and galactic structures in the universe.


Author(s):  
James Binney

In cuspy atmospheres, jets driven by supermassive black holes (BHs) offset radiative cooling. The jets fire episodically, but often enough that the cuspy atmosphere does not move very far towards a cooling catastrophe in the intervals of jet inactivity. The ability of energy released on the sub–parsec scale of the BH to balance cooling on scales of several tens of kiloparsecs arises through a combination of the temperature sensitivity of the accretion rate and the way in which the radius of jet disruption varies with ambient density. Accretion of hot gas does not significantly increase BH masses, which are determined by periods of rapid BH growth and star formation when cold gas is briefly abundant at the galactic centre. Hot gas does not accumulate in shallow potential wells. As the Universe ages, deeper wells form, and eventually hot gas accumulates. This gas soon prevents the formation of further stars, since jets powered by the BH prevent it from cooling, and it mops up most cold infalling gas before many stars can form. Thus, BHs set the upper limit to the masses of galaxies. The formation of low–mass galaxies is inhibited by a combination of photoheating and supernova–driven galactic winds. Working in tandem, these mechanisms can probably explain the profound difference between the galaxy luminosity function and the mass function of dark haloes expected in the cold dark matter cosmology.


2006 ◽  
Vol 2 (S235) ◽  
pp. 114-114 ◽  
Author(s):  
Franziska Köckert ◽  
Matthias Steinmetz

Simulating disk galaxies within the current paradigm of galaxy formation has been a long standing problem. In comparison with observations, the simulated disks were too small and too centrally concentrated, due to a large loss of angular momentum during formation. This is known as the angular momentum catastrophe (Navarro & Benz (1991)). Recently, some progress has been made in reducing this effect by changing the cosmology, including various feedback mechanisms, improving numerical resolution and carefully selecting initial conditions with a quiet merging history after z≈2. Unfortunately, it remains unclear which of these effects, or which combination, has resulted in more realistic disk formation. In order to address this problem, we conduct a systematical study using the N-body code GADGET2 (Springel (2005)). We adopt a flat ΛCDM cosmology with Ωm=0.3, ΩΛ=0.7, Ωbar=0.04 and h=0.65. Using a softening of 0.5 kpc we find disks with a very compact unresolved gas clump in the center and a thin, extended disk (R≈10kpc) of very low mass around it.


Sign in / Sign up

Export Citation Format

Share Document