A new taxonomic arrangement for Paleorhinus scurriensis

Author(s):  
Michelle R. Stocker

ABSTRACTThe paraphyletic genus ‘Paleorhinus’ is understood currently as a cosmopolitan phytosaur taxon from the Late Triassic. There is no consensus regarding the number of species of ‘Paleorhinus,’ with multiple species and genera synonymised into a single genus or even a single species at various points in its published history. The taxonomy is confounded by historical descriptions without the benefit of comparisons to more recently collected specimens, emphasis on plesiomorphic cranial morphology as diagnostic features of the genus, and lack of cladistic analyses. When included in a recent explicitly cladistic phylogenetic analysis, the holotype of ‘Paleorhinus’ scurriensis (TTU P-00539) was found to be the earliest-branching phytosaur with respect to other North American specimens previously referred to ‘Paleorhinus,’ and is generically distinct from Paleorhinus. ‘Paleorhinus’ scurriensis differs from all known phytosaurs in five unambiguous characters: basitubera widely separated mediolaterally; ridge present on lateral surface of jugal; thickened shelf present along posteroventral edge of expanded pterygoid-quadrate wing; ‘septomaxillae’ separated and excluded from internarial septum; and nasal swelling present posterior to posterior borders of nares. This detailed morphological description of an early-branching phytosaur taxon is a first step towards resolving long-standing issues surrounding specific anatomical features and relationships among early members of the clade.

REINWARDTIA ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 53 ◽  
Author(s):  
Sachiko Nishida ◽  
Henk Van der Werff

NISHIDA, S. & VAN DER WERFF, H. Do cuticle characters support the recognition of Alseodaphne, Nothaphoebe and Dehaasia as distinct genera? Reinwardtia 14(1): 53 – 66. ? The Asian members of the Persea group are divided among the genera Alseodaphne, Apollonias, Dehaasia, Machilus, Nothaphoebe and Phoebe. A recent phylogenetic analysis has shown that Machilus and Phoebe are supported as monophyletic genera but evidence that the closely related genera Alseodaphne, Dehaasia and Nothaphoebe are monophyletic or not was equivocal. In this study we analyzed cuticle characters of 95 collections belonging to the Asian members except for Apollonias. We anticipated two possible outcomes. If the genera were not monophyletic, we expected that the groups based on cuticle characters would consist of species belonging to different genera. If the genera were monophyletic, we expected that the groups based on cuticle characters would consist of species belonging to the same genus. We found 16 groups based on cuticles. Of these, 12 consisted of species of a single genus (one group included a single species and thus a single genus).  The four mixed groups included mostly species of one genus with 1 or 2 species of a different genus. Our results support the recognition of Alseodaphne, Dehaasia, Machilus, Nothaphoebe and Phoebe as distinct genera.


Nematology ◽  
2015 ◽  
Vol 17 (4) ◽  
pp. 377-400 ◽  
Author(s):  
Kimkhuy Khun ◽  
Wilfrida Decraemer ◽  
Marjolein Couvreur ◽  
Gerrit Karssen ◽  
Hanne Steel ◽  
...  

Hirschmanniella mucronatapopulations isolated from two Cambodian provinces were characterised using morphological, morphometric and molecular criteria. Examination of 1024 specimens from 60 different paddy fields revealed high intraspecific variation in morphology and morphometrics, especially in tail terminus shape and stylet length. Sequence results confirmed that morphologically divergent individuals represent a single species, suggesting that neglecting morphological variation has led to an overestimation ofHirschmannielladiversity in former studies. Phylogenetic analysis of the SSU, D2-D3, LSU and ITS1-5.8S-ITS2 regions revealed three concordant clades,H. mucronatahaving a sister relationship withH. kwazunaandH. loofi. Plotting the diagnostic features, including tail terminus shape, stylet length and lip region morphology on the phylogenetic framework, revealed that none of them supported the clades and represented convergent features. All three molecular markers were able to discriminate allHirschmanniellaspecies, but the D2-D3 region was the easiest, fastest and most successful region to be amplified. Species delimitation and the diagnostic features ofHirschmanniellawere re-evaluated.Hirschmanniella abnormalis and H. exactaare considered to be junior synonyms ofH. oryzaeandH. mannaiaspecies inquirenda. Finally, a list of valid species with indication of synonyms and a polytomous key are provided.


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
ASHOK KUMAR VERMA
Keyword(s):  

An attempt was made to find the ichthyo-diversity of Muntjibpur pond of Allahabad. Systematic surveys were conducted during a period of one year. A total of 13 species of fishes belonging to 12 genera, 8 families and 5 orders were identified. Siluriformes order is represented by 5 genera and 5 species while Cypriniformes order by 4 genera and 5 species. Each of the orders Clupeiformes, Osteoglossiformes and Ophiocephaliformes is represented by single genus and single species.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Matthew Chung ◽  
Vincent M. Bruno ◽  
David A. Rasko ◽  
Christina A. Cuomo ◽  
José F. Muñoz ◽  
...  

AbstractAdvances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.


2003 ◽  
Vol 60 (3) ◽  
pp. 533-568 ◽  
Author(s):  
J. C. MANNING ◽  
P. GOLDBLATT ◽  
M. F. FAY

A revised generic synopsis of sub-Saharan Hyacinthaceae is presented, based on a molecular phylogenetic analysis of the family. Generic rank is accorded only to reciprocally monophyletic clades that can be distinguished by recognizable morphological discontinuities, thereby permitting an appropriate generic assignment of species not included in the analysis. Three subfamilies are recognized within the region. Subfamily Ornithogaloideae, characterized by flattened or angular seeds with tightly adhering testa, is considered to include the single genus Ornithogalum, which is expanded to include the genera Albuca, Dipcadi, Galtonia, Neopatersonia and Pseudogaltonia. Recognizing any of these segregates at generic level renders the genus Ornithogalum polyphyletic, while subdivision of Ornithogalum into smaller, morphologically distinguishable segregates in order to preserve the monophyly of each is not possible. Subfamily Urgineoideae, characterized by flattened or winged seeds with brittle, loosely adhering testa, comprises the two mainland African genera Bowiea and Drimia. The latter is well circumscribed by its deciduous, short-lived perianth and includes the previously recognized genera Litanthus, Rhadamanthus, Schizobasis and Tenicroa. The monotypic Madagascan Igidia is provisionally included in the subfamily as a third genus on the basis of its seeds, pending molecular confirmation of its relationships. Subfamily Hyacinthoideae resolves into three clades, distinguished as tribes Hyacintheae (strictly northern hemisphere and not treated further), Massonieae and Pseudoprospereae tribus nov. Full descriptions and a key to their identification are provided for all genera. New combinations reflecting the generic circumscriptions adopted here are made for most African and all Indian and Madagascan species.


2020 ◽  
pp. 1-17
Author(s):  
Thomas E. Guensburg ◽  
James Sprinkle ◽  
Rich Mooi ◽  
Bertrand Lefebvre

Abstract Twelve specimens of Eumorphocystis Branson and Peck, 1940 provide the basis for new findings and a more informed assessment of whether this blastozoan (a group including eocrinoids, blastoids, diploporites, rhombiferans) constitutes the sister taxon to crinoids, as has been recently proposed. Both Eumorphocystis and earliest-known crinoid feeding appendages express longitudinal canals, a demonstrable trait exclusive to these taxa. However, the specimen series studied here shows that Eumorphocystis canals constrict proximally and travel within ambulacrals above the thecal cavity. This relationship is congruent with a documented blastozoan pattern but very unlike earliest crinoid topology. Earliest crinoid arm cavities lie fully beneath floor plates; these expand and merge directly with the main thecal coelomic cavity at thecal shoulders. Other associated anatomical features echo this contrasting comparison. Feeding appendages of Eumorphocystis lack two-tiered cover plates, podial basins/pores, and lateral arm plating, all features of earliest crinoid ‘true arms.’ Eumorphocystis feeding appendages are buttressed by solid block-like plates added during ontogeny at a generative zone below floor plates, a pattern with no known parallel among crinoids. Eumorphocystis feeding appendages express brachioles, erect extensions of floor plates, also unknown among crinoids. These several distinctions point to nonhomology of most feeding appendage anatomy, including longitudinal canals, removing Eumorphocystis and other blastozoans from exclusive relationship with crinoids. Eumorphocystis further differs from crinoids in that thecal plates express diplopores, respiratory structures not present among crinoids, but ubiquitous among certain groups of blastozoans. Phylogenetic analysis places Eumorphocystis as a crownward blastozoan, far removed from crinoids.


Fishes ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Kyle D. Martens ◽  
Jason Dunham

When multiple species of fish coexist there are a host of potential ways through which they may interact, yet there is often a strong focus on studies of single species without considering these interactions. For example, many studies of forestry–stream interactions in the Pacific Northwest have focused solely on the most prevalent species: Coastal cutthroat trout. To examine the potential for interactions of other fishes with coastal cutthroat trout, we conducted an analysis of 281 sites in low order streams located on Washington’s Olympic Peninsula and along the central Oregon coast. Coastal cutthroat trout and juvenile coho salmon were the most commonly found salmonid species within these streams and exhibited positive associations with each other for both presence and density. Steelhead were negatively associated with the presence of coastal cutthroat trout as well as with coho salmon and sculpins (Cottidae). Coastal cutthroat trout most frequently shared streams with juvenile coho salmon. For densities of these co-occurring species, associations between these two species were relatively weak compared to the strong influences of physical stream conditions (size and gradient), suggesting that physical conditions may have more of an influence on density than species interactions. Collectively, our analysis, along with a review of findings from prior field and laboratory studies, suggests that the net effect of interactions between coastal cutthroat trout and coho salmon do not appear to inhibit their presence or densities in small streams along the Pacific Northwest.


2018 ◽  
Vol 57 (7) ◽  
pp. 905-908 ◽  
Author(s):  
David New ◽  
Alicia G Beukers ◽  
Sarah E Kidd ◽  
Adam J Merritt ◽  
Kerry Weeks ◽  
...  

AbstractWhole genome sequencing (WGS) was used to demonstrate the wide genetic variability within Sporothrix schenckii sensu lato and establish that there are two main species of Sporothrix within Australian clinical isolates—S. schenckii sensu stricto and Sporothrix globosa. We also demonstrated southwest Western Australia contained genetically similar S. schenckii ss strains that are distinct from strains isolated in the eastern and northern states of Australia. Some genetic clustering by region was also noted for northern NSW, Queensland, and Northern Territory. Phylogenetic analysis of WGS data provided greater phylogenetic resolution compared to analysis of the calmodulin gene alone.


2009 ◽  
Vol 83 (2) ◽  
pp. 238-262 ◽  
Author(s):  
Richard C. Hulbert ◽  
Steven C. Wallace ◽  
Walter E. Klippel ◽  
Paul W. Parmalee

The previously poorly known “Tapiravus” polkensis Olsen, 1960 (Mammalia, Perissodactyla, Tapiridae) is now known from abundant, well preserved specimens from both the type area in central Florida and from the Gray Fossil Site (GFS) in eastern Tennessee. The latter has produced over 75 individuals, the greatest number of tapirids from a single fossil site, including many articulated skeletons. Almost all linear measurements taken on skulls, mandibles, and cheek teeth from GFS have coefficients of variation less than 10 (most between 3 and 7), indicating the presence of a single species. However, the sample reveals considerable intraspecific variation for a few key morphologic features, including development of the sagittal crest, outline shape of the nasals, and number and relative strength of lingual cusps on the P1. The Florida sample of T. polkensis is more limited, but has the same state as the GFS sample for all preserved characters of systematic significance, and while the Florida teeth are on average smaller (especially narrower lower cheek teeth), they fall either within or just below the observed range of the Gray Fossil Site population. The new material supports a reassignment of “Tapiravus” polkensis to the genus Tapirus, and demonstrates that the geologic age of the species is significantly younger than previously thought, Hemphillian rather than Barstovian. Tapirus polkensis is the smallest known North American Tapirus, and smaller than any of the extant species in the genus, with an estimated average mass of 125 kg.


2020 ◽  
Vol 70 (4) ◽  
pp. 2873-2878 ◽  
Author(s):  
María José León ◽  
Cristina Galisteo ◽  
Antonio Ventosa ◽  
Cristina Sánchez-Porro

A comparative taxonomic study of Spiribacter and Halopeptonella species was carried out using a phylogenomic approach based on comparison of the core genome, orthologous average nucleotide identity (OrthoANIu), Genome-to-Genome Distance Calculator (GGDC) and average amino acid identity (AAI). Phylogenomic analysis based on 976 core translated gene sequences obtained from their genomes showed that Spiribacter aquaticus SP30T, S. curvatus UAH-SP71T, S. roseus SSL50T, S. salinus M19-40T and Halopeptonella vilamensis DSM 21056T formed a robust cluster, clearly separated from the remaining species of closely related taxa. AAI between H. vilamensis DSM 21056T and the species of the genus Spiribacter was ≥73.1 %, confirming that all these species belong to the same single genus. On the other hand, S. roseus SSL50T and S. aquaticus SP30T showed percentages of OrthoANIu and digital DNA–DNA hybridization of 98.4 % and 85.3 %, respectively, while these values among those strains and the type strains of the other species of Spiribacter and H. vilamensis DSM 21056T were ≤80.8 and 67.8 %, respectively. Overall, these data show that S. roseus SSL50T and S. aquaticus SP30T constitute a single species and thus that S. aquaticus SP30T should be considered as a later, heterotypic synonym of S. roseus SSL50T based on the rules for priority of names. We propose an emended description of S. roseus , including the features of S. aquaticus . We also propose the reclassification of H. vilamensis as Spiribacter vilamensis comb. nov.


Sign in / Sign up

Export Citation Format

Share Document