A 2.45-GHz dual-diode rectenna and rectenna arrays for wireless remote supply applications

2011 ◽  
Vol 3 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Hakim Takhedmit ◽  
Laurent Cirio ◽  
Boubekeur Merabet ◽  
Bruno Allard ◽  
François Costa ◽  
...  

This paper describes a compact and efficient rectenna based on a dual-diode microstrip rectifier at 2.45 GHz. This circuit has been designed and optimized using a global analysis technique which associates electromagnetic and circuit approaches. Due to the differential topology of the rectifier, neither input low-pass filter nor via-hole connections are needed. This makes the structure more compact reducing losses. Measurements of a single rectenna element show 83% efficiency over an optimal load of 1050 Ω at a power density of 0.31 mW/cm2. To increase the received RF power and then increase dc power over the load, identical rectennas have been interconnected to form arrays. Two and four elements rectenna arrays, connected either in parallel or in series, have been developed. It was shown that by properly choosing the interconnection topology and the optimal output load, higher dc voltage or dc power have been obtained. The four-element series-connected array can provide experimentally up to 3.85 times output dc voltage compared to the single rectenna. The parallel-connected rectenna arrays generate approximately 2.15 and 3.75 times output dc power for two and four elements, respectively.

2021 ◽  
Vol 261 ◽  
pp. 01028
Author(s):  
Zhisen Yao ◽  
Guige Gao

Based on the traditional ip-iq harmonic detection theory, the accuracy of harmonic detection is easily affected by the phase-locked loop (PLL) output phase error, and the single low-pass filter (LPF) detection accuracy and filtering effect cannot be simultaneously. In this paper, an improved harmonic detection method based on the second-order generalized integrator-frequency locked loop (SOGI-FLL) technique is proposed to generate sine and cosine signals with the same frequency as the grid voltage; The traditional low-pass filter and average filter are used in series to improve the response speed and accuracy. Through theoretical analysis of the improved harmonic detection method and simulation in MATLAB environment, the theory and simulation results prove the effectiveness of the improved method.


2014 ◽  
Vol 62 (10) ◽  
pp. 2300-2307 ◽  
Author(s):  
Pedro Vera Castejon ◽  
Diego Correas Serrano ◽  
Fernando D. Quesada Pereira ◽  
Juan Hinojosa ◽  
Alejandro Alvarez Melcon

Author(s):  
Abdellah Taybi ◽  
A. Tajmouati ◽  
J. Zbitou ◽  
A. Errkik ◽  
M. Latrach ◽  
...  

<p>This paper deals with the design and achievement of a novel microstrip rectifier with high conversion efficiency and output voltage. Firstly, we have designed a rectifier based on HSMS2820 Schottky diodes by using a series topology to convert the electromagnetic energy into DC power. Then, a stepped-impedance low pass filter was implemented to filter the unwanted harmonics generated by the non-linear Schottky diode. Both of the structures have been simulated and fabricated on an FR4 substrate with dielectric permittivity constant 4.4, thickness of 1.6 mm and loss tangent of 0.025. Good performances were confirmed throughout the measurement results and an interesting output voltage was observed.</p>


2017 ◽  
Vol E100.C (10) ◽  
pp. 858-865 ◽  
Author(s):  
Yohei MORISHITA ◽  
Koichi MIZUNO ◽  
Junji SATO ◽  
Koji TAKINAMI ◽  
Kazuaki TAKAHASHI

2016 ◽  
Vol 15 (12) ◽  
pp. 2579-2586
Author(s):  
Adina Racasan ◽  
Calin Munteanu ◽  
Vasile Topa ◽  
Claudia Pacurar ◽  
Claudia Hebedean

Author(s):  
Nanan Chomnak ◽  
Siradanai Srisamranrungrueang ◽  
Natapong Wongprommoon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document