A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snapshots

Author(s):  
Aritra Acharyya ◽  
Suranjana Banerjee ◽  
J. P. Banerjee

A large-signal model and a simulation technique based on non-sinusoidal voltage excitation are used to obtain the electric field snapshots from which the series resistance and related high-frequency properties of a 35 GHz Silicon Single-Drift Region (SDR) Impact Avalanche Transit Time (IMPATT) device have been estimated for different bias current densities. A novel method is proposed in this paper to determine the parasitic series resistance of a millimeter-wave IMPATT device from large-signal electric field snapshots at different phase angles of a full cycle of steady-state oscillation. The method is based on the depletion width modulation of the device under a large-signal condition. The series resistance of the device is also obtained from the large-signal admittance characteristics at threshold frequency. The values of series resistance of a 35 GHz SDR IMPATT diode obtained from the proposed method and the large-signal admittance method are compared with experimentally reported values. The results show that the proposed method provides better and closer agreement with the experimental value.

2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Bhadrani Banerjee ◽  
Anvita Tripathi ◽  
Adrija Das ◽  
Kumari Alka Singh ◽  
Aritra Acharyya ◽  
...  

The authors have carried out the large-signal (L-S) simulation of double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on 111, 100, and 110 oriented GaAs. A nonsinusoidal voltage excited (NSVE) L-S simulation technique is used to investigate both the static and L-S performance of the above-mentioned devices designed to operate at millimeter-wave (mm-wave) atmospheric window frequencies, such as 35, 94, 140, and 220 GHz. Results show that 111 oriented GaAs diodes are capable of delivering maximum RF power with highest DC to RF conversion efficiency up to 94 GHz; however, the L-S performance of 110 oriented GaAs diodes exceeds their other counterparts while the frequency of operation increases above 94 GHz. The results presented in this paper will be helpful for the future experimentalists to choose the GaAs substrate of appropriate orientation to fabricate DDR GaAs IMPATT diodes at mm-wave frequencies.


2013 ◽  
Vol 5 (5) ◽  
pp. 567-578 ◽  
Author(s):  
Aritra Acharyya ◽  
Jit Chakraborty ◽  
Kausik Das ◽  
Subir Datta ◽  
Pritam De ◽  
...  

Large-signal (L-S) characterization of double-drift region (DDR) impact avalanche transit time (IMPATT) devices based on silicon designed to operate at different millimeter-wave (mm-wave) and terahertz (THz) frequencies up to 0.5 THz is carried out in this paper using an L-S simulation method developed by the authors based on non-sinusoidal voltage excitation (NSVE) model. L-S simulation results show that the device is capable of delivering peak RF power of 657.64 mW with 8.25% conversion efficiency at 94 GHz for 50% voltage modulation; whereas RF power output and efficiency reduce to 89.61 mW and 2.22% respectively at 0.5 THz for same voltage modulation. Effect of parasitic series resistance on the L-S properties of DDR Si IMPATTs is also investigated, which shows that the decrease in RF power output and conversion efficiency of the device due to series resistance is more pronounced at higher frequencies especially at the THz regime. The NSVE L-S simulation results are compared with well established double-iterative field maximum (DEFM) small-signal (S-S) simulation results and finally both are compared with the experimental results. The comparative study shows that the proposed NSVE L-S simulation results are in closer agreement with experimental results as compared to those of DEFM S-S simulation.


2020 ◽  
Vol 1014 ◽  
pp. 68-74
Author(s):  
Jun Ding Zheng ◽  
Wen Sheng Wei ◽  
Wei Bo Yang ◽  
Chang Li

Successes of GaN and SiC electronics in high frequency, large power realm indicate that, the GaN/SiC hetero-structures can be used to design the impact avalanche transit time (IMPATT) diodes operating at Terahertz range, of which holds advantages over homo-structural counterparts in lower noise and reduced tunnel current. Here, the (n)GaN/(p)SiC and (p)GaN/(n)SiC double drift region (DDR) IMPATT diodes operating at 0.85 THz are proposed based on the quantum corrected drift-diffusion (QCDD) model, the performance parameters of static state, large signal and noise properties of the studied devices such as peak electric field intensity, breakdown voltage, optimal negative conductance, output power, conversion efficiency, admittance-frequency relation, quality factor, noise electric field, mean-square noise voltage per band-width and noise measure were numerically calculated and analyzed, which can guide to optimize the GaN/SiC IMPATT diodes.


2019 ◽  
Vol 954 ◽  
pp. 182-187 ◽  
Author(s):  
Jun Ding Zheng ◽  
Wen Sheng Wei ◽  
Jian Zhu Ye ◽  
Wei Bo Yang ◽  
Chang Li ◽  
...  

Si/SiC heterostructural impact avalanche transit time (IMPATT) diode indicates of important applications in Terahertz (THz) power source, integrated circuit etc. In this paper, the (n)Si/(p)4H-SiC, (n)Si/(p)6H-SiC, (n)Si/(p)3C-SiC heterostructural double drift region IMPATT diodes operating at the atmospheric window frequency of 0.85 THz are designed by the drift-diffusion model while their static state, large signal and noise properties are numerically simulated. The performance parameters of the studied devices such as breakdown voltage, peak electric field strength, optimal negative conductance, output power, power conversion efficiency, admittance-frequency relation, quality factor, noise electric field, mean-square noise voltage per band-width and noise measure were calculated and compared. This method can guide for optimizing the Si/SiC heterostructural IMPATT device in the future.


Author(s):  
Tom K. Johansen ◽  
Virginio Midili ◽  
Michele Squartecchia ◽  
Vitaliy Zhurbenko ◽  
Virginie Nodjiadjim ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Nataliia Kuzkova ◽  
Oleksandr Popenko ◽  
Andrey Yakunov

Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects.


Author(s):  
Seiji Nomura ◽  
Kosaku Kurata ◽  
Hiroshi Takamatsu

The irreversible electroporation (IRE) is a novel method to ablate abnormal cells by applying a high voltage between two electrodes that are stuck into abnormal tissues. One of the advantages of the IRE is that the extracellular matrix (ECM) may be kept intact, which is favorable for healing. For a successful IRE, it is therefore important to avoid thermal damage of ECM resulted from the Joule heating within the tissue. A three-dimensional (3-D) analysis was conducted in this study to predict temperature rise during the IRE. The equation of electric field and the heat conduction equation were solved numerically by a finite element method. It was clarified that the highest temperature rise occurred at the base of electrodes adjacent to the insulated surface. The result was significantly different from a two-dimensional (2-D) analysis due to end effects, suggesting that the 3-D analysis is required to determine the optimal condition.


Author(s):  
A. Ashery ◽  
Samia Gad ◽  
A. E.H. Gaballah ◽  
G. M. Turky

Abstract The structure of carbon nanotube CNTs functioning as p-type material deposited over n-type silicon to produce heterojunction of Au/CNTs/n-Si/Al is presented in this study.This work explored the capacitance and conductance at various frequencies, temperatures, and voltages, the novelty here is that negative capacitance and conductance were observed at high frequencies in all temperatures and voltages, whereas capacitance appeared at both high and low frequencies, such as (2x107,1x107,1x102,10) Hz. At high-frequency f = 2x107 Hz, the capacitance raises while the conductance decreases; at all temperatures and voltages, the capacitance and conductance exhibit the same behavior at particular frequencies such as 1x106,1x105,1x104,1x103Hz, however their behavior differs at 2x107,1x107, 1x102 and 10Hz. Investigating the reverse square capacitance with voltage yielded the energy fermi (Ef), density surface of states (Nss), depletion width (Wd), barrier height, series resistance, and donor concentration (Nd)


2018 ◽  
Vol 119 ◽  
pp. 94-102 ◽  
Author(s):  
Meng-tian Bao ◽  
Ying Wang ◽  
Cheng-hao Yu ◽  
Fei Cao

Sign in / Sign up

Export Citation Format

Share Document