A dual-band unequal power divider with flexible choice of implementation

2015 ◽  
Vol 8 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Cong Tang ◽  
Yong Fan ◽  
Kaijun Song

In this paper, a new asymmetric structure is proposed for the dual-band unequal application, in which both open- and short-ended stubs are applied. Closed-form design equations are obtained for the proposed power divider using the modified even- and odd-mode analysis method. It is observed that the proposed power divider can operate at high frequency ratio from 2.3 to 3.7 and has a wide operating band. Besides, this proposed circuit can offer flexibility in fabrication. For verification, two power dividers operate at 1/2.5 GHz with different values of line impedance are fabricated and tested. There is good agreement between simulation and experimental results, validating the proposed design concepts.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Weimin Wang ◽  
Yongle Wu ◽  
Yuanan Liu

A novel coupled-line structure is proposed to design dual-band and high-power Gysel power dividers with inherent impedance-transforming functions. Based on traditional even- and odd-mode technique, the analytical design methods in closed-form formula are obtained and the accurate electrical parameters analysis is presented. Due to the usage of coupled-line sections, more design-parameter freedom and a wider frequency-ratio operation range for this kind of dual-band Gysel powder divider are obtained. Several numerical examples are designed and calculated to demonstrate flexible dual-band applications with different impedance-transforming functions. A practical microstrip power divider operating at 2 GHz and 3.2 GHz is designed, fabricated, and measured. The good agreement between the calculated and measured results verifies our proposed circuit structure and analytical design approach.


2018 ◽  
Vol 10 (9) ◽  
pp. 1011-1018
Author(s):  
Pengcheng Zhang ◽  
Xianqi Lin ◽  
Cong Tang ◽  
Yuan Jiang ◽  
Yong Fan

AbstractIn this study, wideband bandpass power divider with good out-of-band performance is proposed. Two bandpass filters (BPFs) are utilized to substitute the quarter-wavelength transmission line in conventional Wilkinson power divider. A resistor is specially arranged between two BPFs for a good isolation. Four transmission zeros (TZs) are found to be distributed in the lower and upper stopband of the power divider. Moreover, the locations of two TZs can be shifted by tuning the impedance ratio of the center-loaded open stub, which is propitious to improve the frequency selectivity. Even- and odd-mode methods are applied to analyze the proposed power divider and closed-form design formulas are obtained. Finally, two prototype power dividers with measured rejection level in the upper stopband larger than 29.1 and 32 dB till to 2.7f0 and 2.69f0, respectively, are designed and fabricated to testify the proposed design concept. Good agreement between the simulated and measured results is observed, validating the validity of the proposed design principle.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1124
Author(s):  
Zihui Zhu ◽  
Zhongbao Wang ◽  
Ye Fu ◽  
Shaojun Fang ◽  
Hongmei Liu ◽  
...  

A microstrip balanced-to-unbalanced (BTU) Gysel-type arbitrary power divider without the high-impedance transmission-line (TL) section is proposed to eliminate the power division ratio (PDR) limit of the conventional microstrip BTU power dividers. The proposed circuit includes five moderate-impedance TLs having the same characteristic impedance in addition to a grounded resistor. The arbitrary PDR is easily obtained by varying the electrical length of the TLs without changing the characteristic impedances, especially the large PDR, which is difficult to achieve by means of conventional BTU power dividers. When the PDR is ∞, the proposed circuit becomes a balun. The closed-form design equations are derived and discussed. To verify the proposed circuit, three prototypes I, II, and III are designed and fabricated for PDRs of 10 dB, 20 dB, and ∞ dB, respectively. The measured PDRs are in good agreement with the simulations. The measured isolation between the output ports is higher than 31 dB for prototypes I and II. The measured insertion loss of the balun prototype is 0.194 dB. Furthermore, the common-mode suppression of greater than 32 dB and the return loss of higher than 22 dB are obtained for various PDRs.


2015 ◽  
Vol 744-746 ◽  
pp. 1624-1627
Author(s):  
Li Peng ◽  
Ying Wang

This paper investigates free transverse vibrations of finite Euler–Bernoulli beams resting on viscoelastic Pasternak foundations. The differential quadrature methods (DQ) are applied directly to the governing equations of the free vibrations. Under the simple supported boundary condition, the natural frequencies of the transverse vibrations are calculated, and compared with the results of the complex mode analysis method. The numerical results obtained by using the DQ and the complex mode methods are in good agreement for the first seven order natural frequencies, but with the growth of the orders, the small quantitative differences between them increase. The effects of the foundation parameters on the natural frequencies are also studied in numerical examples.


2018 ◽  
Vol 10 (3) ◽  
pp. 308-312
Author(s):  
Kaijun Song ◽  
Te Kong ◽  
Yu Zhu ◽  
Hongxing Xu ◽  
Lifei Jiang ◽  
...  

AbstractA novel Gysel power divider with high power-handling capability based on half-mode substrate integrated waveguide (HMSIW) has been presented in this paper. A HMSIW ring is used and good input/output impedance matching is achieved based on HMSIW-microstrip taper transition. Two microstrip stubs are introduced in HMSIW ring to assemble two isolation resistors to improve the isolation between the output ports. The even- and odd-mode analysis method is used for the presented circuit. A prototype of the presented power divider is designed, fabricated, and measured. The measured results show a reasonable agreement with the simulated ones.


2017 ◽  
Vol 10 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Yang Xiong ◽  
Litian Wang ◽  
Doudou Pang ◽  
Wei Zhang ◽  
Fan Zhang ◽  
...  

In this paper, a dual-wideband bandpass filter (BPF) with independently controllable center frequencies (CFs) and wide stopband suppression is presented using a new quintuple-mode resonator (QMR). By applying the classical odd-/even-mode analysis method, the resonant characteristics of the new QMR have been analyzed. It shows that five modes can be excited, and two of them can be employed to form the lower passband, while the other three modes contribute to the higher passband. For verification, a dual-wideband BPF using the new QMR is designed, fabricated, and tested. Experimental results show that the CFs of the dual-wideband BPF centered at 2.96 GHz and 5.695 GHz with 3 dB fractional bandwidths of 27.7 and 23.4%, respectively. In addition, 20-dB suppression in upper-stopband ranges from 2.23 to 4.04f0, where f0 is the center frequency of the first passband. The measurement results are in good agreement with the prediction results.


Frequenz ◽  
2016 ◽  
Vol 70 (5-6) ◽  
Author(s):  
Feng Wei ◽  
Ning-Wei Chen ◽  
Wei-Jin Li ◽  
Lei Chen

AbstractIn this paper, two single- and dual-band equal power dividers (PDs) integrated filtering responses are proposed using quarter-wavelength stepped-impedance resonators (SIRs). By appropriately adjusting the impedances and electric length ratios of SIRs, the proposed structures can achieve compact sizes and wide stop-band performances. In addition, source-load coupling is applied to create a pair of transmission zeros at each side of the pass-bands, which can improve effectively the frequency selectivity and the out-of-band rejection. To validate the design theory, two single- and dual-band PDs with good filtering responses are designed, implemented and measured, respectively. The predicted results on S parameters are compared with the measured ones and good agreement is achieved.


2013 ◽  
Vol 437 ◽  
pp. 1066-1072 ◽  
Author(s):  
Wei Min Wang ◽  
Yuan An Liu

A novel coupled-line circuit configuration is proposed to design small-size dual-band Wilkinson power dividers. This proposed power divider consists of three sections of coupled lines and two isolation resistors. The analytical design theory is given and the electrical parameters analysis is provided. Six numerical examples are presented to demonstrate the flexible dual-band applications. To avoid a negative isolation resistor, a practical power divider operating at 1GHz and 2.2GHz with two positive-value resistors is designed. The calculated and full-wave simulated results verify our proposed idea. Keywords: Coupled-line, dual-band, power divider.


2020 ◽  
Vol 12 (8) ◽  
pp. 749-753
Author(s):  
Song Guo ◽  
Kaijun Song ◽  
Yong Fan

AbstractA four-way suspended-stripline power divider is presented in this letter. The power dividing network is designed by using the suspended stripline, while the isolation network is designed by using the microstrip line. The vias are used to connect the power dividing network and the isolation network. The even- and odd-mode analysis method is applied to design the presented power divider. The simulated and measured results of the presented power divider show reasonable agreement with each other. The measured input return loss in the band is greater than 28 dB (7.92 to 9.53 GHz), while the measured insertion loss is less than 0.37 dB. The measured output return loss is greater than 20 dB from 7.82 to 9.86 GHz. Besides, the measured output isolation is greater than 20 dB.


Sign in / Sign up

Export Citation Format

Share Document