Wideband filtering power divider with deep and wide stopband

2018 ◽  
Vol 10 (9) ◽  
pp. 1011-1018
Author(s):  
Pengcheng Zhang ◽  
Xianqi Lin ◽  
Cong Tang ◽  
Yuan Jiang ◽  
Yong Fan

AbstractIn this study, wideband bandpass power divider with good out-of-band performance is proposed. Two bandpass filters (BPFs) are utilized to substitute the quarter-wavelength transmission line in conventional Wilkinson power divider. A resistor is specially arranged between two BPFs for a good isolation. Four transmission zeros (TZs) are found to be distributed in the lower and upper stopband of the power divider. Moreover, the locations of two TZs can be shifted by tuning the impedance ratio of the center-loaded open stub, which is propitious to improve the frequency selectivity. Even- and odd-mode methods are applied to analyze the proposed power divider and closed-form design formulas are obtained. Finally, two prototype power dividers with measured rejection level in the upper stopband larger than 29.1 and 32 dB till to 2.7f0 and 2.69f0, respectively, are designed and fabricated to testify the proposed design concept. Good agreement between the simulated and measured results is observed, validating the validity of the proposed design principle.

Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 301-306
Author(s):  
Xuehan Hu ◽  
Feng Wei ◽  
Jiawen Hao ◽  
Xiaowei Shi

AbstractIn this paper, a tunable power divider (PD) with a good band-pass filtering response using quarter-wavelength stepped impedance resonators (SIRs) is presented. By appropriately adjusting the impedance and electrical length ratio of SIR, the proposed structure can achieve wide stopband performance. Meanwhile, four varactor diodes are loaded to the external resonators to achieve electrical reconfiguration. In addition, a pair of transmission zeros (TZs) can be generated by applying source and load coupling on each side of the passband, which can effectively improve passband selectivity and out-of-band rejection. In order to verify the feasibility of the proposed design method, a prototype circuit of the proposed filtering power divider (FPD) with tunable center frequency is simulated, fabricated and measured. A good agreement between the simulation and measurement results is observed.


Frequenz ◽  
2016 ◽  
Vol 70 (5-6) ◽  
Author(s):  
Feng Wei ◽  
Ning-Wei Chen ◽  
Wei-Jin Li ◽  
Lei Chen

AbstractIn this paper, two single- and dual-band equal power dividers (PDs) integrated filtering responses are proposed using quarter-wavelength stepped-impedance resonators (SIRs). By appropriately adjusting the impedances and electric length ratios of SIRs, the proposed structures can achieve compact sizes and wide stop-band performances. In addition, source-load coupling is applied to create a pair of transmission zeros at each side of the pass-bands, which can improve effectively the frequency selectivity and the out-of-band rejection. To validate the design theory, two single- and dual-band PDs with good filtering responses are designed, implemented and measured, respectively. The predicted results on S parameters are compared with the measured ones and good agreement is achieved.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1124
Author(s):  
Zihui Zhu ◽  
Zhongbao Wang ◽  
Ye Fu ◽  
Shaojun Fang ◽  
Hongmei Liu ◽  
...  

A microstrip balanced-to-unbalanced (BTU) Gysel-type arbitrary power divider without the high-impedance transmission-line (TL) section is proposed to eliminate the power division ratio (PDR) limit of the conventional microstrip BTU power dividers. The proposed circuit includes five moderate-impedance TLs having the same characteristic impedance in addition to a grounded resistor. The arbitrary PDR is easily obtained by varying the electrical length of the TLs without changing the characteristic impedances, especially the large PDR, which is difficult to achieve by means of conventional BTU power dividers. When the PDR is ∞, the proposed circuit becomes a balun. The closed-form design equations are derived and discussed. To verify the proposed circuit, three prototypes I, II, and III are designed and fabricated for PDRs of 10 dB, 20 dB, and ∞ dB, respectively. The measured PDRs are in good agreement with the simulations. The measured isolation between the output ports is higher than 31 dB for prototypes I and II. The measured insertion loss of the balun prototype is 0.194 dB. Furthermore, the common-mode suppression of greater than 32 dB and the return loss of higher than 22 dB are obtained for various PDRs.


2020 ◽  
Vol 71 (4) ◽  
pp. 274-280
Author(s):  
Cheng-Guang Sun ◽  
Jia-Lin Li ◽  
Baidenger Agyekum Twumasi

AbstractThe design and implementation of planar multi-way differential power dividers remain a challenge in terms of the compactness and especially, for the achievable characteristic impedance of the quarter-wavelength transformer when considering large number of outputs. In this work, the double-sided parallel stripline is recommended to realize such a power divider with out-of-phase outputs, and explicit design methods are provided. The proposed multi-way power divider was developed without the use of lump elements on a single substrate. For system applications, a prototype operating at 41.6 MHz with 12 pairs of out-of-phase outputs that utilize the microstrip line as the output interfaces was fabricated and examined. At the center frequency of 41.6MHz, the developed prototype measured insertion losses akin to 14.3 dB as compared with the theoretical data of 13.8 dB. The attainable impedance bandwidth ranges from 10 MHz to 80 MHz under a magnitude imbalance of ±0.3 dB. The isolations of the adjacent outputs are about 13.1 dB as compared with the theoretical values of 14.428 dB, and are better than 34 dB for more distant ones. Parameter measurements are in good agreement with the numerical predications, thus demonstrating the realization of the proposed multi-way power divider.


2015 ◽  
Vol 8 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Cong Tang ◽  
Yong Fan ◽  
Kaijun Song

In this paper, a new asymmetric structure is proposed for the dual-band unequal application, in which both open- and short-ended stubs are applied. Closed-form design equations are obtained for the proposed power divider using the modified even- and odd-mode analysis method. It is observed that the proposed power divider can operate at high frequency ratio from 2.3 to 3.7 and has a wide operating band. Besides, this proposed circuit can offer flexibility in fabrication. For verification, two power dividers operate at 1/2.5 GHz with different values of line impedance are fabricated and tested. There is good agreement between simulation and experimental results, validating the proposed design concepts.


Frequenz ◽  
2018 ◽  
Vol 72 (9-10) ◽  
pp. 455-458 ◽  
Author(s):  
Vivek Singh ◽  
Vinay Kumar Killamsetty ◽  
Biswajeet Mukherjee

Abstract In this letter, a miniaturized Band Pass Filter (BPF) with wide stopband centered at 0.350 GHz for TETRA band applications is proposed using a Spiral Short Circuit quarter wavelength Stepped Impedance Resonator (SSC-SIR) and a stub loaded on feed line for enhancement of rejection level in the stopband. Spiral configuration of the resonator is used for the miniaturization of BPF. The proposed BPF provides a 3dB fractional bandwidth of 13.7 % with two transmission zeros in the lower and upper stopband to provide good selectivity and four transmission zeros which provide wide stopband upto 6.86f0. Proposed BPF has a very compact size of 0.064λg×0.062λg.


2015 ◽  
Vol 713-715 ◽  
pp. 1048-1051
Author(s):  
Xin Cao ◽  
Zong Xi Tang

In this paper, an ultra-wideband Wilkinson power divider based on the quarter wavelength transformation is proposed. The proposed power divider utilizes the resonance property of the four stage quarter wavelength microstrip stubs to increase the isolation between the to output ports. As the measured results show that, the power divider has the insertion loss less than 1.3dB with the minimum isolation 15.4dB in the working frequency range from 1GHz to 5GHz. The simulated results and measured results are in good agreement and the proposed power divider can be applied in the communication systems in modern electronic engineering.


2018 ◽  
Vol 10 (10) ◽  
pp. 1107-1112 ◽  
Author(s):  
Song Guo ◽  
Kaijun Song ◽  
Yedi Zhou ◽  
Yong Fan

AbstractThe ultra-wideband bandpass-response power divider with high-frequency selectivity is presented in this paper. This power divider consists of an impedance transformer, a filter network, and two isolation resistors. In order to realize the ultra-wideband filtering performance, parallel coupling lines and parallel open-circuit branches are applied to the second impedance converter. A resistor is added to the ends of the coupling lines to achieve good isolation and output return loss. The equivalent-circuit method is employed to analyze the presented power divider. The power divider, working at 3.45–8.29 GHz, is designed and fabricated. Two transmission zeros are generated at 2.8 and 9 GHz, respectively, and the out-of-band suppression is >13 dB. The measured results are in good agreement with the simulation ones.


Sign in / Sign up

Export Citation Format

Share Document