Scattering of the H-polarized plane wave by finite and semi-infinite multilayer systems of infinite graphene strip gratings in the THz range

2019 ◽  
Vol 12 (5) ◽  
pp. 380-386
Author(s):  
Mstislav E. Kaliberda ◽  
Leonid M. Lytvynenko ◽  
Sergey A. Pogarsky

AbstractWe consider the scattering and absorption of the H-polarized plane wave by finite and semi-infinite systems of layers in the THz range. Every layer consists of an infinite graphene strip grating embedded into a dielectric slab. The solution of the problem we obtain in several steps. First, with the use of the method of singular integral equations we obtain scattering matrices of a single layer. Then, we present equations for the finite and semi-infinite systems of layers relatively the Fourier amplitudes of the scattered field. The frequency dependences of the reflection, transmission, and absorption coefficients demonstrate the variety of resonances: plasmon, slab-mode, grating-mode resonances, and resonances of the multilayer structure.

2013 ◽  
Vol 3 (5) ◽  
pp. 666-674 ◽  
Author(s):  
Olga V. Shapoval ◽  
Juan Sebastian Gomez-Diaz ◽  
Julien Perruisseau-Carrier ◽  
Juan R. Mosig ◽  
Alexander I. Nosich

2018 ◽  
Vol 11 (4) ◽  
pp. 326-333 ◽  
Author(s):  
Mstislav E. Kaliberda ◽  
Leonid M. Lytvynenko ◽  
Sergey A. Pogarsky ◽  
Mariia P. Roiuk

AbstractThe scattering of the H-polarized plane electromagnetic wave by a finite multilayer graphene strip grating is considered. The properties of the whole structure are obtained from the set of integral equations, which are written in the operator form. The scattering operators of a single layer are used and supposed to be known. Scattering and absorption characteristics as well as diffraction patterns are presented.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4097
Author(s):  
Hee-Dong Jeong ◽  
Seong-Won Moon ◽  
Seung-Yeol Lee

Diffraction is a fundamental phenomenon that reveals the wave nature of light. When a plane wave is transmitted or reflected from a grating or other periodic structures, diffracted light waves propagate at several angles that are specified by the period of the given structure. When the optical period is shorter than the wavelength, constructive interference of diffracted light rays from the subwavelength-scale grating forms a uniform plane wave. Many studies have shown that through the appropriate design of meta-atom geometry, metasurfaces can be used to control light properties. However, most semitransparent metasurfaces are designed to perform symmetric operation with regard to diffraction, meaning that light diffraction occurs identically for front- and back-side illumination. We propose a simple single-layer plasmonic metasurface that achieves asymmetric diffraction by optimizing the transmission phase from two types of nanoslits with I- and T-shaped structures. As the proposed structure is designed to have a different effective period for each observation side, it is either diffractive or nondiffractive depending on the direction of observation. The designed structure exhibits a diffraction angle of 54°, which can be further tuned by applying different period conditions. We expect the proposed asymmetric diffraction meta-grating to have great potential for the miniaturized optical diffraction control systems in the infrared band and compact optical diffraction filters for integrated optics.


1992 ◽  
Vol 59 (1) ◽  
pp. 102-108 ◽  
Author(s):  
Yonglin Xu

The reflection and transmission of a plane wave by a distribution of cavities in the interface of two solids of different mechanical properties are investigated. For the calculation of the reflection and transmission coefficients by a distribution of cavities, six auxiliary wave states are used in conjunction with the reciprocal identity. Specific results are presented for scattering by a doubly periodic array of cavities in the interface of solids of different elastic moduli and mass densities. For a typical cell, the boundary integral equations for scattering by a cavity at the interface of two solids are derived on the basis of continuity of displacements and tractions across the interface and by taking advantage of the geometrical periodicity. Solutions to the system of singular integral equations have been obtained by the boundary element method. Numerical results are presented as functions of the frequency for two angles of incidence.


2018 ◽  
Vol 781 ◽  
pp. 53-57 ◽  
Author(s):  
D.G. Piliptsou ◽  
Alexander V. Rogachev ◽  
Alexander Rudenkov ◽  
Ekaterina Kulesh ◽  
Alexander Luchnikov

The influence of the architecture of multilayer metal-carbon coatings, the nature of individual metallic layers (Ti, Cu), heat treatment parameters on their microhardness, the level of internal stresses and tribotechnical properties are determined. It is defined that for systems based on carbon and nanosized metal layers, the friction coefficient values are lower than for single-layer carbon coatings. Heat treatment of multilayer systems in air leads to the increase in the friction coefficient, primarily Ti/a-C/Ti coatings, which is due to the formation of solid phases of TiN, TiC and TiCN, as well as oxides of TixOy acting as abrasive. The level of internal stresses of multilayer systems containing layers of copper is lower than that of single-layer carbon coatings and coatings containing layers of titanium.


2013 ◽  
Vol 70 (3) ◽  
pp. 794-808 ◽  
Author(s):  
Feng Zhang ◽  
Zhongping Shen ◽  
Jiangnan Li ◽  
Xiuji Zhou ◽  
Leiming Ma

Abstract Although single-layer solutions have been obtained for the δ-four-stream discrete ordinates method (DOM) in radiative transfer, a four-stream doubling–adding method (4DA) is lacking, which enables us to calculate the radiative transfer through a vertically inhomogeneous atmosphere with multiple layers. In this work, based on the Chandrasekhar invariance principle, an analytical method of δ-4DA is proposed. When applying δ-4DA to an idealized medium with specified optical properties, the reflection, transmission, and absorption are the same if the medium is treated as either a single layer or dividing it into multiple layers. This indicates that δ-4DA is able to solve the multilayer connection properly in a radiative transfer process. In addition, the δ-4DA method has been systematically compared with the δ-two-stream doubling–adding method (δ-2DA) in the solar spectrum. For a realistic atmospheric profile with gaseous transmission considered, it is found that the accuracy of δ-4DA is superior to that of δ-2DA in most of cases, especially for the cloudy sky. The relative errors of δ-4DA are generally less than 1% in both the heating rate and flux, while the relative errors of δ-2DA can be as high as 6%.


1995 ◽  
Vol 62 (2) ◽  
pp. 273-281 ◽  
Author(s):  
C. H. Kuo ◽  
L. M. Keer

The three-dimensional problem of a multilayered composite containing an arbitrarily oriented crack is considered in this paper. The crack problem is analyzed by the equivalent body force method, which reduces the problem to a set of singular integral equations. To compute the kernels of the integral equations, the stiffness matrix for the layered medium is formulated in the Hankel transformed domain. The transformed components of the Green’s functions and derivatives are determined by solving the stiffness matrix equations, and the kernels are evaluated by performing the inverse Hankel transform. The crack-opening displacements and the three modes of the stress intensity factor at the crack front are obtained by numerically solving the integral equations. Examples are given for a penny-shaped crack in a bimaterial and a three-material system, and for a semicircular crack in a single layer adhered to an elastic half-space.


RSC Advances ◽  
2017 ◽  
Vol 7 (60) ◽  
pp. 37815-37822 ◽  
Author(s):  
F. Ersan ◽  
H. Arkin ◽  
E. Aktürk

This paper investigates the effect of point defects of both hole (Ge, Se) and substitution doping of p-block elements, in single-layer b-GeSe, based on first principles plane wave calculations within spin-polarized density functional theory.


Sign in / Sign up

Export Citation Format

Share Document