Radiation characteristics of microstrip antenna on frequency selective surface absorbing layer

Author(s):  
Ashish Raj ◽  
Nisha Gupta

Abstract The radiation characteristics of the microstrip antenna (MSA) on the frequency selective surface (FSS) based absorbing layer is presented in this paper. It is observed that an absorbing layer placed between the MSA configuration and the ground plane helps in controlling the radiation characteristics of the antenna. It not only reduces the back lobe but also reduces the beamwidth and gain of the antenna simultaneously. This is because the absorbing layer absorbs some amount of power radiated by the antenna in both forward and backward directions. The proposed design is simulated using Ansys HFSS electromagnetic simulation software and the results are validated by comparing it with the results obtained from the equivalent circuit approach as well as experimental results. The effect of absorber on radiation characteristics of the radiator demonstrates its potential use in suppressing the radiation from the printed circuit board traces.

2013 ◽  
Vol 427-429 ◽  
pp. 1293-1296
Author(s):  
Yan Zhong Yu ◽  
Ji Zhen Ni ◽  
Xian Hui Li

A printed inverted-F antenna for RFID tag at 5.8 GHz is designed in this paper. The antenna structure consists of an inverted-F patch, a substrate layer, and a ground plane. To reduce costs, the FR4 is selected as the material of substrate layer, which is used commonly in PCB (Printed Circuit Board). Its relative permittivity is 4.4 and a loss tangent is 0.02. The inverted-F patch and ground plane are laid on/under the substrate layer respectively. The designed antenna is modeled, simulated and optimized by using HFSS (high frequency electromagnetic simulation software). Simulation results demonstrate that the printed inverted-F antenna can satisfy the requirements of RFID Tag applications.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
N. Prombutr ◽  
P. Kirawanich ◽  
P. Akkaraekthalin

This article presents a bandwidth enhancing technique using a modified ground plane with diagonal edges, rectangular slot, and T-shape cut for the design of compact antennas. The proposed low-cost, compact-size circular patch antenna on 3 cm 5.1 cm printed circuit board (FR-4) is designed and validated through simulations and experiments. Results show that the T-shaped ground plane with the presence of the diagonal cuts at the top corners and the rectangular slots can increase the bandwidth. Return losses of 19 and 26 dB for the first and second resonant frequencies, respectively, can be achieved when the depth of the diagonal cut is 5 mm, the dimension of each rectangular slot is  mm, and the T-shaped size is  mm, providing a 28.67% wider bandwidth than FCC standard.


Author(s):  
Euclides Lourenço Chuma ◽  
Yuzo Iano

This article presents a simple and economical technique for constructing a microstrip antenna for use in teaching the theory and practice of microstrip antenna design. The hardware components used to manufacture this microstrip antenna include an FR-4-printed circuit board, conductive copper tape, pencil, ruler, and scissors. Electromagnetic simulation software is an optional but helpful contribution to the process of teaching microstrip antenna theory.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 539
Author(s):  
Ryan P. Tortorich ◽  
William Morell ◽  
Elizabeth Reiner ◽  
William Bouillon ◽  
Jin-Woo Choi

Because modern electronic systems are likely to be exposed to high intensity radiated fields (HIRF) environments, there is growing interest in understanding how electronic systems are affected by such environments. Backdoor coupling in particular is an area of concern for all electronics, but there is limited understanding about the mechanisms behind backdoor coupling. In this work, we present a study on printed circuit board (PCB) backdoor coupling and the effects of via fencing. Existing work focuses on ideal stackups and indicates that edge radiation is significantly reduced by via fencing. In this study, both full wave electromagnetic modeling and experimental verification are used to investigate both ideal and practical PCB stackups. In the ideal scenario, we find that via fencing substantially reduces coupling, which is consistent with prior work on emissions. In the practical scenario, we incorporate component footprints and traces which naturally introduce openings in the top ground plane. Both simulation and experimental data indicate that via fencing in the practical scenario does not substantially mitigate coupling, suggesting that PCB edge coupling is not the dominant coupling mechanism, even at varying angles of incidence and polarization.


2019 ◽  
pp. 139-145
Author(s):  
A. N. Mikhailov

A new type of single‑layer transrefleсtor structure based on microstrip reflective antenna array is described. The developed  device is a single‑layer printed circuit board on one side of which a system of printed reflectors is located, and on the other is  a polarization structure consisting of parallel metal conductors, in contrast to a microstrip reflectarray antenna. The shape and  geometrical dimensions of printed reflectors arranged in a rectangular or hexagonal (triangular) pattern are chosen in such a way  that they transform a spherical front of an incident vertically polarized electromagnetic wave into a flat front of reflected wave. In  the case of irradiation of the developed transreflector with a horizontal polarization wave, the printed structure makes minimal  electromagnetic energy loss during its passage. The results of characteristics modeling (including phase curves) of an element  of the reflective lattice in the W‑band for different angles of incidence of the wave on the planar structure under study are given.  Based on the results obtained, the sizes of the reflective elements of the transreflector, which provide for the correction of the  incident wave with the necessary phase discrete, are determined and an electrodynamic model of the transreflector antenna is  built. The simulation of the main radiation characteristics of the antenna with the developed single‑layer transreflector was carried  out.


Sign in / Sign up

Export Citation Format

Share Document