Design of multiple transmission zeros-enabled compact broadband BPFs based on microstrip-to-CPW transition technology

Author(s):  
Abu Nasar Ghazali ◽  
Mohd Sazid

Abstract In this paper, we present a miniaturized ultra-wideband (UWB) bandpass filter (BPF) with multiple transmission zeros (TZs), which is based on transition technology of microstrip with short-circuited coplanar waveguide (CPW). The ground plane of the BPF contains a multiple mode resonator (MMR)-based CPW which is capacitively linked through the dielectric to two open-circuited microstrip lines on the top. The MMR is initially designed to allocate its lowest three resonant modes quasi-equally inside the designated UWB spectrum (3.1–10.6 GHz). This is followed by optimization of microstrip lines to provide a good broadband response possessing minimum insertion loss, two TZs at the lower and upper passband edges that improve selectivity and a wide stopband with appreciable attenuation. Later, multiple-folded split ring resonators are coupled to the BPF to inject dual passband TZs. The predicted theory in simulation is verified against measured result and is found to be in good agreement. The prototype covers a substrate area of only 14.6 × 9.2 mm2.

2018 ◽  
Vol 10 (7) ◽  
pp. 794-800 ◽  
Author(s):  
Abu Nasar Ghazali ◽  
Mohd Sazid ◽  
Srikanta Pal

AbstractThis paper proposes a dual notched band ultra-wideband (UWB) bandpass filter (BPF) based on hybrid transition of microstrip and coplanar waveguide (CPW). The CPW in ground plane houses a stepped impedance resonator shorted at ends, and is designed to place its resonant modes within the UWB passband. The microstrips on the top plane are placed some distance apart in a back-to-back manner. The transition of microstrip on top and shorted CPW in the ground is coupled through the dielectric in a broadside manner. The optimized design of the transition develops the basic UWB spectrum with good return/insertion loss and extended stopband. Later, defected ground structure, embedded in CPW, and split ring resonators, coupled to feeding lines are utilized to develop dual sharp passband notches. The simulated data are verified against the experimentally developed prototype. The proposed dual notched UWB-BPF structure measures only 14.6 × 7.3 mm2, thereby justifying its compactness.


2019 ◽  
Vol 11 (2) ◽  
pp. 168-174
Author(s):  
Abu Nasar Ghazali ◽  
Jabir Hussain ◽  
Srikanta Pal

AbstractA compact ultra-wideband (UWB) bandpass filter (BPF) based on surface-to-surface transition technology with features of extended stopband and integrated interference mitigation characteristics is proposed. The basic structure consists of a modified multiple-mode resonator (MMR)-based co-planar waveguide in the ground surface and coupled in broadside manner with the microstrip lines on the top surface. Later, two open-circuited stubs are embedded in the feeding lines and two complementary split ring resonators are etched in the MMR to implement multiple in-band transmission zeros so as to circumvent interference. A prototype is fabricated and measured to validate the results obtained in simulation. The proposed UWB-BPF is compact in size with overall dimensions of 17.82 by 11.08 mm2.


Author(s):  
Lei Li ◽  
Jingchang Nan ◽  
Jing Liu ◽  
Chengjian Tao

Abstract A compact ultrawideband (UWB) antenna with reconfigurable triple band notch characteristics is proposed in this paper. The antenna consists of a coplanar waveguide-fed top-cut circular-shaped radiator with two etched C-shaped slots, a pair of split-ring resonators (SRRs) on the backside and four p-type intrinsic n-type (PIN) diodes integrated in the slots and SRRs. By controlling the current distribution in the slots and SRRs, the antenna can realize eight band notch states with independent switch ability, which allows UWB to coexist with 5G (3.3–4.4 GHz)/WiMAX (3.3–3.6 GHz), WLAN (5.15–5.825 GHz), and X-band (7.9–8.4 GHz) bands without interference. By utilizing a nested structure of C-shaped slots and SRRs on the backside, a compact size of 18 × 19.5 mm2 is achieved along with multimode triple band notch reconfigurability. The antenna covers a bandwidth of 3.1–10.6 GHz. A prototype is fabricated and tested. The simulated and experimental results are in good agreement.


2015 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Sarthak Singhal ◽  
Ankit Pandey ◽  
Amit Kumar Singh

A coplanar waveguide (CPW)-fed circular-shaped fractal antenna with third iterative orthogonal elliptical slot for ultra-wideband applications is presented. The bandwidth is enhanced by using successive iterations of radiating patch, CPW feedline, and tapered ground plane. An impedance bandwidth of 2.9–20.6 GHz is achieved. The designed antenna has omnidirectional radiation patterns along with average peak realized gain of 3.5 dB over the entire frequency range of operation. A good agreement is observed between the simulated and experimental results. This antenna structure has the advantages of miniaturized size and wide bandwidth in comparison to previously reported fractal structures.


Frequenz ◽  
2019 ◽  
Vol 73 (7-8) ◽  
pp. 261-265
Author(s):  
Feng Wei ◽  
Hao-Jie Yue ◽  
Xiao-Wei Shi

Abstract In this paper, a balanced dual-band bandpass filter (BPF) is designed based on microstrip folded stepped impedance split ring resonators (SISRRs) and balanced microstrip/slotline transition structures. The center frequencies and the fractional bandwidths (FBWs) of the two differential-mode (DM) passbands can be tuned by changing the physical lengths of two SISRRs and the gaps between the two resonators, respectively. The balanced microstrip/slotline transition structures can achieve a wideband common-mode (CM) suppression. Moreover, the DM passbands are independent from the CM responses, which significantly simplifies the design procedure. In addition, due to 0-degree feed structure and cross coupling structure, more transmission zeros can be realized, which can improve the passbands selectivity greatly. In order to validate the design strategies, a balanced dual-band BPF centered at 2.47 GHz and 5.21 GHz was fabricated and a good agreement between the simulated and measured results is observed.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Weiping Li ◽  
Zongxi Tang ◽  
Xin Cao

In this paper, a substrate integrated waveguide (SIW) bandpass filter using defected ground structure (DGS) with complementary split ring resonators (CSRRs) is proposed. By using the unique resonant properties of CSRRs and DGSs, two passbands with a transmission zero in the middle have been achieved. The resonant modes of the two passbands are different and the bandwidth of the second passband is much wider than that of the first one. In order to increase out-of-band rejection, a pair of dumbbell DGSs has been added on each side of the CSRRs. The structure is analyzed using equivalent circuit models and simulated based on EM simulation software. For validation, the proposed filter is fabricated and measured. The measurement results are in good agreement with the simulated ones.


Author(s):  
Chaiyong Soemphol ◽  
Niwat Angkawisittpan

<span>A coplanar waveguide</span><em></em><span>fed ultra-wideband antenna with extended transmission band to WLAN frequency is investigated. The proposed antenna consists of a modified </span><span>semi-</span><span>circular patch and staircase of ground plane. The prototype is fabricated on a low cost FR4 substrate with dielectric constant of 4.4</span><span> with thicknes of 0.8 mm. The overall dimensions of proposed UWB antenna are </span><span>34 mm x 40 mm. The simulation and experimental results have been shown that the proposed antenna archives low VSWR over transmission bandwidth from 2.10 - 12.7 GHz to cover both WLAN and UWB bands.  The average gain is 3.87 dBi. It depicts nearly omni-directional radiation pattern like dipole antenna. Moreover, the fabricated prototype antenna shows a good agreement between the simulated and measured results</span>


2018 ◽  
Vol 7 (1) ◽  
pp. 19-24 ◽  
Author(s):  
A. S. Elkorany ◽  
G. T. Ahmed ◽  
D. A. Saleeb

In this paper, CPW-Fed ultra wideband (UWB) planar monopole antenna (PMA) loaded by double elliptical split ring resonators (ESRRs) for double band-notch characteristics is introduced and examined. Two different ESRRs with different dimensions are printed in the antenna backside to notch two different frequencies. The ESRRs are also rotated and the corresponding return loss effect is examined.  Different notch frequencies can be obtained by varying the ESRRs, dimensions. Two single SRRs are used to notch two frequencies instead of using dual SRR pairs. Two notch frequencies at 5.2 GHz and 6.9 GHz has been obtained to notch WLAN and C-band wireless applications, respectively. A directive radiation pattern in E-plane and omnidirectional radiation patterns in the H-plane could be observed. Also the gain is suppressed in the notch frequencies. The group delay is nearly stable in the UWB frequency range, except at the notch frequencies, which is distorted sharply. So, the proposed antenna is a good candidate for the modern UWB systems. Finite element method FEM and finite integration technique FIT are used to simulate the proposed structures through the usage of Ansys HFSS and CST MWS. Very good agreement between both results has been obtained.


Author(s):  
Jiaxin Kuang ◽  
Haiwen Liu ◽  
Linping Feng ◽  
Tian Hongliang

Abstract In this paper, a compact balanced diplexer using a novel hairpin split ring resonator (H-SRR) is presented and demonstrated. Firstly, the working principle of the proposed H-SRR is described, which shows a negative permittivity or a negative permeability in the stopband. It can be used to construct compact passive components and improve the stopband rejection performance. Then, the differential-mode (DM) excitation and common-mode (CM) excitation are investigated, respectively. Under DM operation, the H-SRR can provide one DM resonant mode. Under CM operation, the H-SRR can excite two CM resonant modes far from the DM resonant mode, thus producing a desired CM rejection performance. Moreover, by introducing a mixed electromagnetic (EM) coupling, transmission zeros (TZs) are produced, significantly improving the DM isolation between the two channels. Finally, a balanced diplexer is designed and fabricated. The lower and higher channels of the diplexer are centered at 3.36 and 4.00 GHz. The DM channel isolation is better than 40/41 dB in the two passbands when the frequency ratio is less than 1.2, which is in satisfactory agreement with simulated results.


Sign in / Sign up

Export Citation Format

Share Document