Compact Balanced Diplexer Based on Hairpin Split Ring Resonators (H-SRRs) with High Isolation Performance

Author(s):  
Jiaxin Kuang ◽  
Haiwen Liu ◽  
Linping Feng ◽  
Tian Hongliang

Abstract In this paper, a compact balanced diplexer using a novel hairpin split ring resonator (H-SRR) is presented and demonstrated. Firstly, the working principle of the proposed H-SRR is described, which shows a negative permittivity or a negative permeability in the stopband. It can be used to construct compact passive components and improve the stopband rejection performance. Then, the differential-mode (DM) excitation and common-mode (CM) excitation are investigated, respectively. Under DM operation, the H-SRR can provide one DM resonant mode. Under CM operation, the H-SRR can excite two CM resonant modes far from the DM resonant mode, thus producing a desired CM rejection performance. Moreover, by introducing a mixed electromagnetic (EM) coupling, transmission zeros (TZs) are produced, significantly improving the DM isolation between the two channels. Finally, a balanced diplexer is designed and fabricated. The lower and higher channels of the diplexer are centered at 3.36 and 4.00 GHz. The DM channel isolation is better than 40/41 dB in the two passbands when the frequency ratio is less than 1.2, which is in satisfactory agreement with simulated results.

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 356 ◽  
Author(s):  
Musab Hameed ◽  
Gaobiao Xiao ◽  
Lina Qiu ◽  
Can Xiong ◽  
Tayyab Hameed

This paper presents a simple split ring resonator excitation to realize a multi-mode wideband bandpass filter in a rectangular waveguide cavity. The proposed resonator employs two rectangular split rings attached with two coaxial probes extended into the cavity to excite two resonant modes, unlike the conventional cavity resonators which employ conductive cylinders in the cavities to achieve the same results. A hybrid magnetic (HM) mode and a hybrid electric (HE) mode are the two hybrid modes excited to realize the wideband bandpass filter. The filter operates at 2.5 GHz center frequency with 53% fractional bandwidth. Finally, the prototypes of a second and a fourth order filter are fabricated for results validation. Measured results are in good agreement with the simulated ones.


Author(s):  
Abu Nasar Ghazali ◽  
Mohd Sazid

Abstract In this paper, we present a miniaturized ultra-wideband (UWB) bandpass filter (BPF) with multiple transmission zeros (TZs), which is based on transition technology of microstrip with short-circuited coplanar waveguide (CPW). The ground plane of the BPF contains a multiple mode resonator (MMR)-based CPW which is capacitively linked through the dielectric to two open-circuited microstrip lines on the top. The MMR is initially designed to allocate its lowest three resonant modes quasi-equally inside the designated UWB spectrum (3.1–10.6 GHz). This is followed by optimization of microstrip lines to provide a good broadband response possessing minimum insertion loss, two TZs at the lower and upper passband edges that improve selectivity and a wide stopband with appreciable attenuation. Later, multiple-folded split ring resonators are coupled to the BPF to inject dual passband TZs. The predicted theory in simulation is verified against measured result and is found to be in good agreement. The prototype covers a substrate area of only 14.6 × 9.2 mm2.


Frequenz ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Maksud Alam ◽  
Amber Khan ◽  
Mainuddin ◽  
Binod Kumar Kanaujia ◽  
Mirza Tariq Beg

AbstractIn this paper a coplanar waveguide feed (CPW) monopole antenna backed with artificial magnetic conductor (AMC) structure for efficient radiation has been presented for off-body wearable applications. A split ring resonator (SRR) having thiner and longer lines to produce higher inductance and six splits with smaller gaps for high capacitance have been placed underneath CPW fed monopole to achieve resonance mode at a lower frequency. Higher values of inductance and capacitance produce resonant modes at relatively lower frequencies resulting in highly miniaturized antenna. The desired −10dB S11 bandwidth has been optimized firstly, by tuning/optimizing flow of surface currents with the help of several slots/slits and later by realizing AMC reflector with the help of full ground backed foam. The proposed antenna covers 2.45 GHz industrial, scientific and medical (ISM) band body area network (BAN) application and posses good front to back ratio (FBR) and thereby low and acceptable values of specific absorption rate (SAR). The proposed antenna has been designed and simulated using Ansys high frequency structured simulator and tested using vector network analyzer and anechoic chamber. The simulated and measured results well agree with each other.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 202 ◽  
Author(s):  
Xiaobo Zhang ◽  
Saeed Ur Rahman ◽  
Qunsheng Cao ◽  
Ignacio Gil ◽  
Muhammad Irshad khan

In this paper, a wideband antenna was designed for super-wideband (SWB) applications. The proposed antenna was fed with a rectangular tapered microstrip feed line, which operated over a SWB frequency range (1.42 GHz to 50 GHz). The antenna was implemented at a compact size with electrical dimensions of 0.16 λ × 0.27 λ × 0.0047 λ mm3, where λ was with respect to the lowest resonance frequency. The proposed antenna prototype was fabricated on a F4B substrate, which had a permittivity of 2.65 and 1 mm thickness. The SWB antenna exhibited an impedance bandwidth of 189% and a bandwidth ratio of 35.2:1. Additionally, the proposed antenna design exhibited three band notch characteristics that were necessary to eradicate interference from WLAN, WiMAX, and X bands in the SWB range. One notch was achieved by etching an elliptical split ring resonator (ESRR) in the radiator and the other two notches were achieved by placing rectangular split ring resonators close to the signal line. The first notch was tuned by incorporating a varactor diode into the ESRR. The prototype was experimentally validated with, with notch and without notch characteristics for SWB applications. The experimental results showed good agreement with simulated results.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 113
Author(s):  
Rajiv Mohan David ◽  
Mohammad Saadh AW ◽  
Tanweer Ali ◽  
Pradeep Kumar

This paper presents an innovative method for the design of a triple band meta-mode antenna. This unique design of antenna finds application in a particular frequency band of WLAN and WiMAX. This antenna comprises of a square complimentary split ring resonator (SCSRR), a coaxial feed, and two symmetrical comb shaped split ring resonators (CSSRR). The metamaterial unit cell SCSRR independently gains control in the band range 3.15–3.25 GHz (WiMAX), whereas two symmetrical CSSRR unit cell controls the band in the ranges 3.91–4.01 GHz and 5.79–5.94 GHz (WLAN). This design methodology and the study of the suggested unit cells structure are reviewed in classical waveguide medium theory. The antenna has a miniaturized size of only 0.213λ0 × 0.192λ0 × 0.0271λ0 (20 × 18 × 2.54 mm3, where λ0 is the free space wavelength at 3.2 GHz). The detailed dimension analysis of the proposed antenna and its radiation efficiency are also presented in this paper. All the necessary simulations are carried out in High Frequency Structure Simulator (HFSS) 13.0 tool.


Author(s):  
Dina Mariani ◽  
Yanuar Mahfudz Safarudin

Digital television technology has more benefit than analog television, for example several TV channel may included in one frequency channel. The changing from analog to digital televisions system require more innovative antenna parameter such as working frequency, bandwidth, return loss, VSWR, and gain. In other hand, the size of the antenna must be minimalized, so it can be integrated inside digital television. This research used metamaterial element of Complementary Split Ring Resonator (CSSR) method with negative permittivity that manufactured in the patch and Double Pole Ground Plane in the ground side. The antenna ad 478-694 operating frequency. Antenna design and simulation using CST (Computer Simulation Technology) Microwave Studio 2012. The result show that return-loss value < -10 dB, and VSWR = 2 at 478-625 MHz range of frequency. Te value of gain is 3.27 dBi, it has 147 MHz bandwidth, and omnidirectional radiation pattern.


Author(s):  
Sivaranjan Goswami ◽  
Kumaresh Sarmah ◽  
Angana Sarma ◽  
Kandarpa Kumar Sarma ◽  
Sunandan Baruah

Metamaterial-based design of microstrip antennas and other microwave structures have gained enormous popularity worldwide among researchers. The complementary split ring resonator (CSRR) is one of the most commonly used metamaterial structures in this direction. The CSRR structure yields a negative value of its effective permittivity at a narrow band near its resonant frequency. CSRR structure was initially proposed as a notch filtering element in microstrip transmission lines because of the negative permittivity. Later, the CSRR structure found its use in antennas and other microwave applications. The CSRR structure is reported to enhance the performance of a microstrip antenna in terms of its gain and bandwidth. In addition, CSRR structure is also used in the design of dual band antennas and antennas with integrated filters. This chapter deals with the practical design aspects relative to these applications of CSRR structures.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 209 ◽  
Author(s):  
Min-Hang Weng ◽  
Fu-Zhong Zheng ◽  
Hong-Zheng Lai ◽  
Shih-Kun Liu

In this paper, we develop a bandpass filter using a stub-loaded stepped impedance resonator (SLSIR) and calculate the even and odd resonant modes of this type of resonator using the input impedance/admittance analysis. In this study, two impedance ratios and two length ratios are operated as the design parameters for controlling the resonant modes of the SLSIR. Several resonant mode variation curves operating three resonant modes with different impedance ratios and two length ratios are developed. By tuning the desired impedance ratios and length ratios of the SLSIRs, compact ultra-wideband (UWB) bandpass filters (BPFs) can be achieved. Two examples of the UWB BPFs are designed in this study. The first example is UWB filter with a wide stopband and the second one is dual UWB BPF, namely, with UWB performance and a notch band. The first filter is designed for a UWB response from 3.1 to 5.26 GHz having a stopband from 5.3 to 11 GHz, with an attenuation level better than 18 dB. The second filter example is a dual UWB BPF with the frequency range from 3.1 to 5 GHz and 6 to 10.1 GHz using two sets of the proposed SLSIR. The measured results have insertion loss of less than 1 dB, and return loss greater than 10 dB. Furthermore, the coupling structures and open stub of the SLSIR also provide several transmission zeros at the skirt of the passbands for improving the passband selectivity.


2020 ◽  
Vol 12 (8) ◽  
pp. 809-814
Author(s):  
Lili Qu ◽  
Yonghong Zhang ◽  
Qun Li ◽  
Yong Fan

AbstractThis paper presents a notched band ultra-wideband bandpass filter using a single perturbed quint-mode half-mode substrate-integrated waveguide cavity. The cavity is perturbed by loading four stubs at two corners of the magnetic walls of the single cavity. The variable parameters of stubs are selected to move down the first five resonant modes to the predetermined passband during the design process. Meanwhile, microstrip lines with a transition structure located on two loaded stubs are employed to feed the resonator. Moreover, the filter also firstly designs a notched band by introducing a complementary split-ring resonator inside the cavity to mitigate potential interference signals at 8 GHz (satellite communication). Finally, a prototype filter was implemented and measured to verify.


Sign in / Sign up

Export Citation Format

Share Document