Supplementation with methyl donors during lactation to high-fat-sucrose-fed dams protects offspring against liver fat accumulation when consuming an obesogenic diet

2014 ◽  
Vol 5 (5) ◽  
pp. 385-395 ◽  
Author(s):  
P. Cordero ◽  
F. I. Milagro ◽  
J. Campion ◽  
J. A. Martinez

Methyl donor supplementation has been reported to prevent obesity-induced liver fat accumulation in adult rats. We hypothesized that this protection could be mediated by perinatal nutrition. For this purpose, we assessed the response to an obesogenic diet (high-fat-sucrose, HFS) during adulthood depending on maternal diet during lactation. Female Wistar rats fed control diet during pregnancy were assigned to four postpartum dietary groups: control, control supplemented with methyl donors (choline, betaine, folic acid, vitamin B12), HFS and HFS supplemented with methyl donors. At weaning, the male offspring was transferred to a chow diet and at week 12th assigned to a control or a HFS diet during 8 weeks. The offspring whose mothers were fed HFS during lactation showed increased adiposity (19%,P<0.001). When fed the HFS diet as adults, offspring whose mothers were HFS supplemented had more body fat (23%,P<0.001) than those from HFS non-supplemented. However, they showed lower liver fat accumulation (−18%,P<0.001). Srebf1, Dnmt1 and Lepr liver mRNA levels increased after adulthood HFS feeding. In those animals HFS fed during adulthood, previous maternal HFS decreased Lepr and Dnmt1 expression levels when compared with c-HFS offspring, while the supplementation of control and HFS-fed dams, respectively, induced higher hepatic Mme and Lepr mRNA levels after adult HFS intake compared with hfs-HFS offspring. In conclusion, maternal HFS diet during lactation influenced the response to an obesogenic diet in the adult progeny. Interestingly, dietary methyl donor supplementation in lactating mothers fed an obesogenic diet reduced liver fat accumulation, but increased adipose tissue storage in adult HFS-fed offspring.

2019 ◽  
Vol 44 (3) ◽  
pp. 320-325 ◽  
Author(s):  
Hsin-Yi Yang ◽  
Wan-Ju Yeh ◽  
Jung Ko ◽  
Jiun-Rong Chen

The objective of this study was to evaluate the effects of the hot-water extract of defatted Camellia oleifera seeds (CSE) on body and liver fat accumulation in rats. Forty rats were divided into 5 groups and each group was fed either an isocaloric control diet or a high-fat liquid diet with 0% (H), 0.12% (H1), 0.24% (H2), or 0.48% CSE (H3) for 8 weeks. Ingestion of the high-fat liquid diet increased abdominal and liver fat accumulation, although no difference was found in body weights compared with rats fed the control diet. We found that rats fed the H2 and H3 diets had lower plasma alanine aminotransferase activities than the H group in the fourth and eighth weeks. At the end of the study, the H2 and H3 groups also had lower epididymal and retroperitoneal fat masses, and all CSE groups had lower circulatory leptin levels than the H group. CSE consumption decreased hepatic fat accumulation in terms of liver triglycerides and a histopathology analysis, and ameliorated high-fat diet-induced elevation of hepatic tumor necrosis factor-α levels. We also found that CSE groups had lower malondialdehyde and hydroxyproline levels in the liver. Our results suggested that CSE may exert beneficial effects through decreasing body fat accumulation and hepatic steatosis and regulating adipokine levels in diet-induced nonalcoholic fatty liver disease.


2011 ◽  
Vol 300 (1) ◽  
pp. E122-E133 ◽  
Author(s):  
Takatoshi Murase ◽  
Koichi Misawa ◽  
Yoshihiko Minegishi ◽  
Masafumi Aoki ◽  
Hideo Ominami ◽  
...  

The prevalence of obesity is increasing globally, and obesity is a major risk factor for type 2 diabetes and cardiovascular disease. We investigated the effects of coffee polyphenols (CPP), which are abundant in coffee and consumed worldwide, on diet-induced body fat accumulation. C57BL/6J mice were fed either a control diet, a high-fat diet, or a high-fat diet supplemented with 0.5 to 1.0% CPP for 2–15 wk. Supplementation with CPP significantly reduced body weight gain, abdominal and liver fat accumulation, and infiltration of macrophages into adipose tissues. Energy expenditure evaluated by indirect calorimetry was significantly increased in CPP-fed mice. The mRNA levels of sterol regulatory element-binding protein (SREBP)-1c, acetyl-CoA carboxylase-1 and -2, stearoyl-CoA desaturase-1, and pyruvate dehydrogenase kinase-4 in the liver were significantly lower in CPP-fed mice than in high-fat control mice. Similarly, CPP suppressed the expression of these molecules in Hepa 1–6 cells, concomitant with an increase in microRNA-122. Structure-activity relationship studies of nine quinic acid derivatives isolated from CPP in Hepa 1–6 cells suggested that mono- or di-caffeoyl quinic acids (CQA) are active substances in the beneficial effects of CPP. Furthermore, CPP and 5-CQA decreased the nuclear active form of SREBP-1, acetyl-CoA carboxylase activity, and cellular malonyl-CoA levels. These findings indicate that CPP enhances energy metabolism and reduces lipogenesis by downregulating SREBP-1c and related molecules, which leads to the suppression of body fat accumulation.


2021 ◽  
pp. 2100065
Author(s):  
Zhen Li ◽  
Viola J. Kosgei ◽  
Anais Bison ◽  
Jean‐Marc Alberto ◽  
Remi Umoret ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 757
Author(s):  
Jennifer M. Monk ◽  
Wenqing Wu ◽  
Dion Lepp ◽  
K. Peter Pauls ◽  
Lindsay E. Robinson ◽  
...  

Cooked common beans (Phaseolus vulgaris) improve intestinal health in lean mice and attenuate intestinal dysbiosis and inflammation when consumed concurrent with obesity development. We determined the effects of a high-fat (HF) bean supplemented diet in mice with established obesity (induced by 12 weeks of HF diet (60% fat as kcal)) compared to obese mice consuming a HF or low-fat (LF) weight loss control diet. Obese C57BL/6 male mice remained consuming HF for eight weeks or were randomly switched from HF to an isocaloric HF with 15.7% cooked navy bean powder diet (HFàHFB) or LF (11% fat as kcal; HFàLF) (n = 12/group). HFàHFB improved the obese phenotype, including (i) fecal microbiome (increased Prevotella, Akkermansia muciniphila, and short-chain fatty acid levels), (ii) intestinal health (increased ZO-1, claudin-2, Muc2, Relmβ, and Reg3γ expression), and (iii) reduced adipose tissue (AT) inflammatory proteins (NFκBp65, STAT3, IL-6, MCP-1, and MIP-1α), versus HF (p < 0.05). Conversely, HFàLF reduced body weight and circulating hormones (leptin, resistin, and PAI-1) versus HF and HFàHFB (p < 0.05); however, AT inflammation and intestinal health markers were not improved to the same degree as HFàHFB (p < 0.05). Despite remaining on a HF obesogenic diet, introducing beans in established obesity improved the obese phenotype (intestinal health and adipose inflammation) more substantially than weight loss alone.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 415-415
Author(s):  
Jibin Kim ◽  
Chaemin Kim ◽  
Mak-Soon Lee ◽  
Hyunmi Ko ◽  
Soojin Lee ◽  
...  

Abstract Objectives This study was conducted to investigate the effect of mulberry leaf extract on hepatic fat accumulation and inflammation in rats fed a high-fat diet. Methods Male Sprague–Dawley rats were randomly divided into three groups. Each group fed normal diet (NOR), high-fat diet (HF), or HF supplemented with 0.8% (w/w) hot water extract of mulberry leaf (HF + ME) for 14 weeks. Results The mulberry extract (ME) supplementation reduced body weight and white adipose tissues (epididymal, retroperitoneal, and mesenteric) weights. Serum levels of triglyceride (TG), total cholesterol (TC), free fatty acids (FFAs), and low-density lipoprotein cholesterol (LDL-C) were lower, while high-density lipoprotein cholesterol (HDL-C) level was higher in the HF + ME group compared to the HF group. The ME reduced the hepatic total lipid, TG, and TC levels compared to the HF group. The mRNA levels of genes related to fatty acid synthesis, such as CD36, sterol regulatory element binding protein 1c (SREBP-1c), and fatty acid synthase (FAS) were down-regulated by the ME supplementation. In addition, the ME lowered the mRNA levels of pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), compared to the HF group. The serum TNF-α level of the HF + ME group was significantly lower than that of the HF group. Conclusions These results suggested that the ME attenuated high-fat diet-induced hepatic fat accumulation and inflammation via regulating gene expression related to hepatic lipid metabolism and pro-inflammatory mediators. Therefore, it is postulated that the ME might be useful as a functional food ingredient to prevent obesity-induced hepatic fat accumulation and inflammation. Funding Sources None.


2014 ◽  
Vol 92 (10) ◽  
pp. 805-812 ◽  
Author(s):  
Yıldız Öner-İyidoğan ◽  
Sevda Tanrıkulu-Küçük ◽  
Muhammed Seyithanoğlu ◽  
Hikmet Koçak ◽  
Semra Doğru-Abbasoğlu ◽  
...  

High fat diet (HFD) is associated with oxidative stress induced fatty liver. Curcumin, an extract of Curcuma longa, has been shown to possess potent antioxidant and hypolipidemic properties. In this study, we investigated the effect of curcumin treatment on hepatic heme oxygenase-1 (HO-1) expression along with pro-oxidant–antioxidant status and lipid accumulation in rats fed an HFD. Male Sprague–Dawley rats were distributed among 4 groups: Group 1, which was fed the control diet (10% of total calories from fat); Group 2, which was fed the HFD (60% of total calories from fat); and groups 3 and 4, which received the HFD supplemented with curcumin and the control diet supplemented with curcumin (1 g/kg diet; w/w), respectively, for 16 weeks. HFD caused increases in hepatic lipid levels, production of reactive oxygen species, and lipid peroxidation. Further, HO-1 expression was significantly decreased. Histopathological examination showed hepatic fat accumulation and slight fibrotic changes. Curcumin treatment reduced hepatic lipids and oxidative stress parameters, and HO-1 expression was significantly increased. These findings suggest that increased HO-1 expression, along with suppressed oxidative stress as well as reduced hepatic fat accumulation and fibrotic changes, contribute to the beneficial effects of curcumin in attenuating the pathogenesis of fatty liver induced metabolic diseases.


2010 ◽  
Vol 1 (4) ◽  
pp. 245-254 ◽  
Author(s):  
K. L. Connor ◽  
M. H. Vickers ◽  
C. Cupido ◽  
E. Sirimanne ◽  
D. M. Sloboda

We previously reported that a maternal high fat (HF) diet resulted in adult offspring with increased adiposity and hyperleptinemia. As leptin has an inhibitory effect on adrenal steroidogenesis and a stimulatory effect on epinephrine synthesis, we hypothesized that key adrenal steroidogenic and catecholaminergic enzymes would be altered in these offspring. Wistar rats were randomized into three groups at weaning: (1) control dams fed a standard control chow diet from weaning and throughout pregnancy and lactation (CON), (2) dams fed a HF diet from weaning and throughout pregnancy and lactation (MHF) and (3) dams fed standard control chow diet throughout life until conception, then fed a HF diet in pregnancy and lactation (PLHF). Dams were mated at day 100 (P100). After birth at P22 (weaning), male offspring were fed a standard control chow (con) or high fat (hf) diet. At P160, plasma samples and adrenal tissues were collected. Postweaning hf diet significantly elevated plasma corticosterone concentrations in PLHF-hf offspring compared to PLHF-con. MHF nutrition increased adrenal adrenocorticotrophic hormone receptor (ACTH-R) mRNA levels compared to CON-con. 3β-hydroxysteroid dehydrogenase (3βHSD) mRNA levels were decreased in MHF compared to PLHF offspring. Phenylethanolamine N-methyltransferase (PNMT) mRNA levels were increased in MHF-hf offspring compared to MHF-con. Plasma homocysteine (HCY) concentrations were significantly elevated in CON-hf and MHF-hf offspring compared to chow-fed offspring, associated with elevated intakes of methionine and reduced intakes of pyridoxine. Immunoreactive leptin receptor (ObRb) and PNMT were colocalized in medullary chromaffin cells. This study suggests that a postweaning HF diet in offspring induced changes in adrenal gene expression levels that are dependent upon the level of maternal nutrition.


2004 ◽  
Vol 92 (3) ◽  
pp. 383-389 ◽  
Author(s):  
Amaia Zabala ◽  
Itziar Churruca ◽  
M. Teresa Macarulla ◽  
Víctor M. Rodríguez ◽  
Alfredo Fernández-Quintela ◽  
...  

Conjugated linoleic acid (CLA) refers to the positional and geometric dienoic isomers of linoleic acid. The dietary intake of CLA has been associated with changes in lipid metabolism. The aim of the present work was to assess the effects of the two main isomers of CLA on sterol regulatory element binding protein (SREBP)-1a and SREBP-1c mRNA levels, as well as on mRNA levels and the activities of several lipogenic enzymes in liver. For this purpose hamsters were fed an atherogenic diet supplemented with 5 g linoleic acid,cis-9,trans-11 ortrans-10,cis-12 CLA/kg diet for 6 weeks. Thetrans-10,cis-12 isomer intake produced significantly greater liver weight, but also significantly decreased liver fat accumulation. No changes in mRNA levels of SREBP-1a, SREBP-1c and lipogenic enzymes, or in the activities of these enzymes, were observed. There was no effect of feedingcis-9,trans-11 CLA. These results suggest that increased fat accumulation in liver does not occur on the basis of liver enlargement produced by feeding thetrans-10,cis-12 isomer of CLA in hamsters. The reduction in hepatic triacylglycerol content induced by this isomer was not attributable to changes in lipogenesis.


Sign in / Sign up

Export Citation Format

Share Document