Maternal high fat diet during critical windows of development alters adrenal cortical and medullary enzyme expression in adult male rat offspring

2010 ◽  
Vol 1 (4) ◽  
pp. 245-254 ◽  
Author(s):  
K. L. Connor ◽  
M. H. Vickers ◽  
C. Cupido ◽  
E. Sirimanne ◽  
D. M. Sloboda

We previously reported that a maternal high fat (HF) diet resulted in adult offspring with increased adiposity and hyperleptinemia. As leptin has an inhibitory effect on adrenal steroidogenesis and a stimulatory effect on epinephrine synthesis, we hypothesized that key adrenal steroidogenic and catecholaminergic enzymes would be altered in these offspring. Wistar rats were randomized into three groups at weaning: (1) control dams fed a standard control chow diet from weaning and throughout pregnancy and lactation (CON), (2) dams fed a HF diet from weaning and throughout pregnancy and lactation (MHF) and (3) dams fed standard control chow diet throughout life until conception, then fed a HF diet in pregnancy and lactation (PLHF). Dams were mated at day 100 (P100). After birth at P22 (weaning), male offspring were fed a standard control chow (con) or high fat (hf) diet. At P160, plasma samples and adrenal tissues were collected. Postweaning hf diet significantly elevated plasma corticosterone concentrations in PLHF-hf offspring compared to PLHF-con. MHF nutrition increased adrenal adrenocorticotrophic hormone receptor (ACTH-R) mRNA levels compared to CON-con. 3β-hydroxysteroid dehydrogenase (3βHSD) mRNA levels were decreased in MHF compared to PLHF offspring. Phenylethanolamine N-methyltransferase (PNMT) mRNA levels were increased in MHF-hf offspring compared to MHF-con. Plasma homocysteine (HCY) concentrations were significantly elevated in CON-hf and MHF-hf offspring compared to chow-fed offspring, associated with elevated intakes of methionine and reduced intakes of pyridoxine. Immunoreactive leptin receptor (ObRb) and PNMT were colocalized in medullary chromaffin cells. This study suggests that a postweaning HF diet in offspring induced changes in adrenal gene expression levels that are dependent upon the level of maternal nutrition.

Author(s):  
Kinga Gawlińska ◽  
Dawid Gawliński ◽  
Małgorzata Filip ◽  
Edmund Przegaliński

Abstract A balanced maternal diet is essential for proper fetal development, and the consumption of a nutritionally inadequate diet during intrauterine development and early childhood is associated with a significantly increased risk of metabolic and brain disorders in offspring. The current literature indicates that maternal exposure to a high-fat diet exerts an irreversible influence on the general health of the offspring. This review of preclinical research examines the relationship between a maternal high-fat diet during pregnancy or lactation and metabolic changes, molecular alterations in the brain, and behavioral disorders in offspring. Animal models indicate that offspring exposed to a maternal high-fat diet during pregnancy and lactation manifest increased depressive-like and aggressive behaviors, reduced cognitive development, and symptoms of metabolic syndrome. Recently, epigenetic and molecular studies have shown that maternal nutrition during pregnancy and the suckling period modifies the development of neurotransmitter circuits and many other factors important to central nervous system development. This finding confirms the importance of a balanced maternal diet for the health of offspring.


2014 ◽  
Vol 306 (7) ◽  
pp. R499-R509 ◽  
Author(s):  
Yada Treesukosol ◽  
Bo Sun ◽  
Alexander A. Moghadam ◽  
Nu-Chu Liang ◽  
Kellie L. Tamashiro ◽  
...  

Maternal high-fat diet appears to disrupt several energy balance mechanisms in offspring. Here, female offspring from dams fed a high-fat diet (HF) did not significantly differ in body weight compared with those fed chow (CHOW), when weaned onto chow diet. Yet when presented with both a chow and a high-fat diet, high-fat intake was significantly higher in HF compared with CHOW offspring. To assess taste-based responsiveness, offspring (12 wk old) were tested in 30-min sessions (10-s trials) to a sucrose concentration series in a brief-access taste test. Compared with CHOW, the HF offspring initiated significantly fewer trials but did not significantly differ in the amount of concentration-dependent licking. Thus, rather than affect lick response (consummatory), maternal diet affects spout approach (appetitive), which may be attributed to motivation-related mechanisms. Consistent with this possibility, naltrexone, an opioid receptor antagonist, further reduced trial initiation, but not licking in both groups. With naltrexone administration, the group difference in trial initiation was no longer evident, suggesting differences in endogenous opioid activity between the two groups. Relative expression of μ-opioid receptor in the ventral tegmental area was significantly lower in HF rats. When trial initiation was not required in one-bottle intake tests, no main effect of maternal diet on the intake of sucrose and corn oil emulsions was observed. Thus, the maternal high-fat diet-induced difference in diet preference is not likely due to changes in the sensory orosensory component of the taste stimulus but may depend on alterations in satiety signals or absorptive mechanisms.


2009 ◽  
Vol 296 (3) ◽  
pp. R493-R500 ◽  
Author(s):  
Philip J. Scarpace ◽  
Yi Zhang

Obesity is a resilient and complex chronic disease. One potential causative factor in the obesity syndrome is leptin resistance. Leptin behaves as a potent anorexic and energy-enhancing hormone in most young or lean animals, but its effects are diminished or lacking in the obese state associated with a normal genetic background. Emerging evidence suggests that leptin resistance predisposes the animal to exacerbated diet-induced obesity (DIO). Elevation of central leptin in young, lean rats induces a leptin resistance that precludes obesity on a chow diet but accelerates high-fat (HF)-induced obesity. Similarly, chronic dietary fructose consumption evokes a leptin resistance that causes obesity only upon HF exposure. Inherent central leptin insensitivity also contributes to dietary weight gain in certain obesity-prone rats. Conversely, aged, leptin-resistant animals are obese with continuous chow feeding and demonstrate aggravated obesity when challenged with an HF diet. Additionally, a submaximal central blockade with a leptin antagonist leads to obesity on both chow and HF diets, as is the case in rodents with leptin receptor deficiency of genetic origin. Despite the differences in the incidence of obesity on a chow diet, all of these forms of leptin resistance predispose rodents to aggravated HF-mediated obesity. Moreover, once leptin resistance takes hold, it aggravates DIO, and the leptin resistance and obesity compound one another, promoting a vicious cycle of escalating weight gain.


2001 ◽  
Vol 169 (3) ◽  
pp. 465-476 ◽  
Author(s):  
L Thomas ◽  
JM Wallace ◽  
RP Aitken ◽  
JG Mercer ◽  
P Trayhurn ◽  
...  

This study examined the pattern of circulating leptin in age-matched sheep during adolescent pregnancy, and its relationship with maternal dietary intake, body composition and tissue expression of the leptin gene. Overfeeding the adolescent pregnant ewe results in rapid maternal growth at the expense of the placenta, leading to growth restriction in the fetus, compared with normal fed controls. Our results demonstrate that, in the adolescent ewe, overfeeding throughout pregnancy was associated with higher maternal leptin concentrations, when compared with moderately fed controls (P<0.05), with no peak in circulating leptin towards the end of pregnancy. There was a close correlation between indices of body composition and circulating leptin levels at day 104 of gestation and at term (P<0.03). Further, when the dietary intake was switched from moderate to high, or high to moderate, at day 50 of gestation, circulating leptin levels changed rapidly, in parallel with the changes in dietary intake. Leptin mRNA levels and leptin protein in perirenal adipose tissue samples, taken at day 128 of gestation, were higher in overfed dams (P<0.04), suggesting that adipose tissue was the source of the increase in circulating leptin in the overnourished ewes. Leptin protein was also detected in placenta but leptin gene expression was negligible. However, leptin receptor gene expression was detected in the ovine placenta, suggesting that the placenta is a target organ for leptin. A negative association existed between maternal circulating leptin and fetal birth weight, placental/cotyledon weight and cotyledon number. In conclusion, in this particular ovine model, hyperleptinaemia was not observed during late pregnancy. Instead, circulating leptin concentrations reflected increased levels of leptin secretion by adipose tissue primarily as a result of the increase in body fat deposition, due to overfeeding. However, there appears to be a direct effect of overfeeding, particularly in the short term. In the nutritional switch-over study, circulating leptin concentrations changed within 48 h of the change in dietary intake. The presence of leptin protein and leptin receptor gene expression in the placenta suggests that leptin could be involved in nutrient partitioning during placental and/or fetal development.


2017 ◽  
Vol 8 (1) ◽  
pp. 3-7 ◽  
Author(s):  
S. Lecoutre ◽  
L. Marousez ◽  
A. Drougard ◽  
C. Knauf ◽  
C. Guinez ◽  
...  

Based on the Developmental Origin of Health and Disease concept, maternal undernutrition has been shown to sensitize adult offspring to metabolic pathologies such as obesity. Using a model of maternal 70% food restriction in pregnant female rats throughout gestation (called FR30), we previously reported that obesity-prone adult male rat offspring displayed hyperleptinemia with modifications in leptin and leptin receptor messenger RNA (mRNA) levels in white adipose tissue (WAT). Apelin is a member of the adipokine family that regulates various aspects of energy metabolism and WAT functionality. We investigated whether apelin and its receptor APJ could be a target of maternal undernutrition. Adult male rat offspring from FR30 dams showed increased plasma apelin levels and apelin gene expression in WAT. Post-weaning high-fat diet led to marked increase in APJ mRNA and protein levels in offspring’s WAT. We demonstrate that maternal undernutrition and post-weaning diet have long-term consequences on the apelinergic system of adult male rat offspring.


2014 ◽  
Vol 5 (5) ◽  
pp. 385-395 ◽  
Author(s):  
P. Cordero ◽  
F. I. Milagro ◽  
J. Campion ◽  
J. A. Martinez

Methyl donor supplementation has been reported to prevent obesity-induced liver fat accumulation in adult rats. We hypothesized that this protection could be mediated by perinatal nutrition. For this purpose, we assessed the response to an obesogenic diet (high-fat-sucrose, HFS) during adulthood depending on maternal diet during lactation. Female Wistar rats fed control diet during pregnancy were assigned to four postpartum dietary groups: control, control supplemented with methyl donors (choline, betaine, folic acid, vitamin B12), HFS and HFS supplemented with methyl donors. At weaning, the male offspring was transferred to a chow diet and at week 12th assigned to a control or a HFS diet during 8 weeks. The offspring whose mothers were fed HFS during lactation showed increased adiposity (19%,P<0.001). When fed the HFS diet as adults, offspring whose mothers were HFS supplemented had more body fat (23%,P<0.001) than those from HFS non-supplemented. However, they showed lower liver fat accumulation (−18%,P<0.001). Srebf1, Dnmt1 and Lepr liver mRNA levels increased after adulthood HFS feeding. In those animals HFS fed during adulthood, previous maternal HFS decreased Lepr and Dnmt1 expression levels when compared with c-HFS offspring, while the supplementation of control and HFS-fed dams, respectively, induced higher hepatic Mme and Lepr mRNA levels after adult HFS intake compared with hfs-HFS offspring. In conclusion, maternal HFS diet during lactation influenced the response to an obesogenic diet in the adult progeny. Interestingly, dietary methyl donor supplementation in lactating mothers fed an obesogenic diet reduced liver fat accumulation, but increased adipose tissue storage in adult HFS-fed offspring.


2013 ◽  
Vol 304 (12) ◽  
pp. E1404-E1411 ◽  
Author(s):  
Yixin Su ◽  
Luke C. Carey ◽  
James C. Rose ◽  
Victor M. Pulgar

Antenatal treatment with glucocorticoids (GC) poses long-lasting effects on endocrine and cardiovascular function. Given that leptin attenuates adrenal function and the reported sex differences in plasma leptin concentration, we hypothesized that antenatal GC will affect leptin levels and leptin modulation of adrenal function in a sex-specific manner. Pregnant sheep were randomly given betamethasone or vehicle at 80 days of gestational age, and offspring were allowed to deliver at term. Adrenocortical cells (ADC) were studied from male and female animals at 1.5 yr of age. Plasma leptin was increased 66% in male and 41% in female GC-treated animals ( P < 0.05), but adrenal leptin mRNA was increased only in GC-treated males ( P < 0.05). Whereas mRNA expression of adrenal leptin receptor isoforms showed sex (Ob-Ra and Ob-Rb) and treatment-dependent (Ob-Rb) differences, protein expression remained unchanged. GC-treated females showed greater plasma cortisol and greater ACTH-stimulated cortisol production ( P < 0.05) in ADC. Leptin exerted a greater inhibitory effect on basal and stimulated cortisol by ADC from GC-treated males ( P < 0.05), with no differences in females. Similarly, greater inhibitory effects on basal and ACTH-stimulated StAR and ACTH-R mRNA expression by leptin were observed in cells from GC males ( P < 0.05), with no changes in females. Persistent effects of antenatal GC on leptin levels and leptin modulation of adrenal function are expressed in a sex-specific manner; males are more sensitive than females to the inhibitory influences of leptin on adrenal function, and this effect appears to be mediated by a greater inhibition of StAR and ACTH-R expression in adrenals of adult GC-treated males.


2017 ◽  
Vol 312 (1) ◽  
pp. E58-E71 ◽  
Author(s):  
Yuanyuan Wu ◽  
Mi-Jeong Lee ◽  
Yasuo Ido ◽  
Susan K. Fried

Increased adipocyte size is hypothesized to signal the recruitment of adipose progenitor cells (APCs) to expand tissue storage capacity. To investigate depot and sex differences in adipose growth, male and female C57BL/6J mice (10 wk-old) were challenged with high-fat (HF) or low-fat (LF) diets (D) for 14 wk. The HFD increased gonadal (GON) depot weight by adipocyte hypertrophy and hyperplasia in females but hypertrophy alone in males. In both sexes, inguinal (ING) adipocytes were smaller than GON, and depot expansion was due to hypertrophy. Matrix metalloproteinase 3 (Mmp3), an antiadipogenic factor, and its inhibitor Timps modulate the extracellular matrix remodeling needed for depot expansion. Mmp3 mRNA was depot different (ING > GON), higher in females than males and mainly expressed in APCs. In males, HFD-induced obesity increased tissue and APC Mmp3 mRNA levels and MMP3 protein and enzymatic activity. In females however, HFD significantly decreased MMP3 protein without affecting its mRNA levels. MMP3 activity also decreased (significant in ING). Timp4 mRNA was expressed mainly in adipocytes, and HFD-induced obesity tended to increase the ratio of TIMP4 to MMP3 protein in females, whereas it decreased it in males. Overexpression of Mmp3 in 3T3-L1 preadipocytes or rhMMP3 protein added to primary human preadipocytes inhibited differentiation, whereas rhTIMP4 improved adipogenesis and attenuated the inhibitory effect of rhMMP3. These data suggest that HFD-induced obesity downregulates APC MMP3 expression to trigger adipogenesis, and adipocyte TIMP4 may modulate this process to regulate hyperplastic vs. hypertrophic adipose tissue expansion, fat distribution, and metabolic health in a sex- and depot-dependent manner.


2017 ◽  
Vol 49 (09) ◽  
pp. e2-e2
Author(s):  
Agnieszka Rak ◽  
Anna Hejmej ◽  
Monika Słupecka-Ziemilska ◽  
Jaroslaw Woliński ◽  
Elzbieta Fiedor ◽  
...  

2009 ◽  
Vol 297 (4) ◽  
pp. R1049-R1057 ◽  
Author(s):  
Kathleen C. Page ◽  
Raleigh E. Malik ◽  
Joshua A. Ripple ◽  
Endla K. Anday

Epidemiological data and results from animal studies indicate that imbalances in maternal nutrition impact the expression of metabolic disorders in the offspring. We tested the hypothesis that consumption of excess saturated fats during pregnancy and lactation contributes to adult metabolic dysfunction and that these disturbances can be further influenced by the postweaning diet. Adult male offspring from chow-fed dams were compared with males from dams fed a diet high in saturated fat (45 kcal/100 kcal) before mating, pregnancy, and lactation. Offspring were weaned to a standard chow diet or high fat diet. Animals were killed at 120 days after a 24-h fast. Body weight, energy intake, fat deposition, serum leptin, and insulin were significantly higher in offspring from control or high-fat dams if fed a high-fat diet from weaning to adulthood. Only fat-fed offspring from fat-fed dams were hyperglycemic. Leptin receptor, proopiomelanocortin, and neuropeptide Y (NPY) were also significantly increased in offspring exposed to excess saturated fat during gestation and into adulthood, whereas NPY1 receptor was downregulated. Signal transducer and activator of transcription 3 mRNA level was significantly higher in offspring from high-fat-fed dams compared with controls; however, no change was detected in cocaine and amphetamine-regulated transcript or suppressor of cytokine signaling 3. An increase in agouti-related protein expression did not reach significance. A significant reduction in phosphatidylinositol 3-kinase regulatory subunit (p85α) coupled to an upregulation of protein kinase B was observed in offspring from high-fat-fed dams transitioned to chow food, whereas p85α expression was significantly increased in high-fat offspring weaned to the high-fat diet. These data support the hypothesis that early life exposure to excess fat is associated with changes in hypothalamic regulation of body weight and energy homeostasis and that postweaning diet influences development of metabolic dysfunction and obesity.


Sign in / Sign up

Export Citation Format

Share Document