Evolution at All Scales in the Vertebrate Fossil Record

2002 ◽  
Vol 11 ◽  
pp. 165-178
Author(s):  
John P. Hunter

The fossil record of vertebrates provides abundant evidence for both the fact and the theory of evolution (Carroll, 1997; Prothero and Schoch, 1994). In support of the fact that evolution has indeed occurred, the vertebrate fossil record clearly documents evolutionary change along lineages, that is, along direct lines of ancestors and descendents. The fossil record also shows step-wise evolutionary changes resulting in the emergence of new kinds of vertebrates from pre-existing kinds—for example, the origin of mammals from the “mammal-like” reptiles. In support of the theory that natural selection, in particular, has been largely responsible for evolutionary change, the fossil record shows that the numerous “transitional” forms that lived in the past—far from being nonviable “monsters”—were functionally integrated organisms that were well adapted to their ecological roles. Finally, the vertebrate fossil record preserves certain large-scale phenomena, such as radiations and trends, which show that evolutionary forces can act over very large time scales.

1999 ◽  
Vol 9 ◽  
pp. 203-220 ◽  
Author(s):  
John P. Hunter

The fossil record of vertebrates provides abundant evidence for both the fact and the theory of evolution (Carroll, 1997; Prothero and Schoch, 1994). In support of the fact that evolution has indeed occurred, the vertebrate fossil record clearly documents evolutionary change along lineages, that is, along direct lines of ancestors and descendents. The fossil record also shows step-wise evolutionary changes resulting in the emergence of new kinds of vertebrates from pre-existing kinds, for example, the origin of mammals from the “mammal-like” reptiles. In support of the theory that natural selection, in particular, has been largely responsible for evolutionary change, the fossil record shows that the numerous “transitional” forms that lived in the past — far from being nonviable “monsters” — were functionally integrated organisms that were well adapted to their ecological roles. Finally, the vertebrate fossil record preserves certain large-scale phenomena, such as radiations and trends, which show that evolutionary forces can act over very large time scales.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Deborah Wall-Palmer ◽  
Arie W. Janssen ◽  
Erica Goetze ◽  
Le Qin Choo ◽  
Lisette Mekkes ◽  
...  

Abstract Background The aragonite shelled, planktonic gastropod family Atlantidae (shelled heteropods) is likely to be one of the first groups to be impacted by imminent ocean changes, including ocean warming and ocean acidification. With a fossil record spanning at least 100 Ma, atlantids have experienced and survived global-scale ocean changes and extinction events in the past. However, the diversification patterns and tempo of evolution in this family are largely unknown. Results Based on a concatenated maximum likelihood phylogeny of three genes (cytochrome c oxidase subunit 1 mitochondrial DNA, 28S and 18S ribosomal rRNA) we show that the three extant genera of the family Atlantidae, Atlanta, Protatlanta and Oxygyrus, form monophyletic groups. The genus Atlanta is split into two groups, one exhibiting smaller, well ornamented shells, and the other having larger, less ornamented shells. The fossil record, in combination with a fossil-calibrated phylogeny, suggests that large scale atlantid extinction was accompanied by considerable and rapid diversification over the last 25 Ma, potentially driven by vicariance events. Conclusions Now confronted with a rapidly changing modern ocean, the ability of atlantids to survive past global change crises gives some optimism that they may be able to persist through the Anthropocene.


1999 ◽  
Vol 5 ◽  
pp. 23-46
Author(s):  
Richard K. Bambach

Determination of the time sequence in the geologic record is a logical process that involves little “guesswork.” The geologic time scale is real, not a circular argument developed to show evolution. By applying Occam's Razor and assuming continuity, it is clear that biotic succession in apparent lineages demonstrates that species are capable of giving rise to others through modification with descent and have done so through geologic time. Although the fossil record is incomplete, biotic succession on a large scale provides a clear and unambiguous outline of the history of the change in life over time.Science seeks explanations for observations and facts that begin as hypotheses. When hypotheses successfully survive rigorous testing, they mature into accepted theories. Evolution is the theory accepted as the explanation for the facts of biotic succession. The operational processes invoked in the theory of evolution (such as mutation, natural selection, isolation, and genetic drift) have been successfully tested many times. The general pattern of biotic succession follows the path expected or predicted for the course of the evolutionary development of the biosphere.The biotic succession is the preserved result of the operation of the processes of organic evolution. Contributions from molecular biology and cladistics make it clear that the branching processes in evolution, operating over time, have produced all the diversity preserved in the fossil record. The current diversity of life is simply the product of its three and a half billion year history.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alexis Rojas ◽  
Joaquin Calatayud ◽  
Michał Kowalewski ◽  
Magnus Neuman ◽  
Martin Rosvall

AbstractThe hypothesis of the Great Evolutionary Faunas is a foundational concept of macroevolutionary research postulating that three global mega-assemblages have dominated Phanerozoic oceans following abrupt biotic transitions. Empirical estimates of this large-scale pattern depend on several methodological decisions and are based on approaches unable to capture multiscale dynamics of the underlying Earth-Life System. Combining a multilayer network representation of fossil data with a multilevel clustering that eliminates the subjectivity inherent to distance-based approaches, we demonstrate that Phanerozoic oceans sequentially harbored four global benthic mega-assemblages. Shifts in dominance patterns among these global marine mega-assemblages were abrupt (end-Cambrian 494 Ma; end-Permian 252 Ma) or protracted (mid-Cretaceous 129 Ma), and represent the three major biotic transitions in Earth’s history. Our findings suggest that gradual ecological changes associated with the Mesozoic Marine Revolution triggered a protracted biotic transition comparable in magnitude to the end-Permian transition initiated by the most severe biotic crisis of the past 500 million years. Overall, our study supports the notion that both long-term ecological changes and major geological events have played crucial roles in shaping the mega-assemblages that dominated Phanerozoic oceans.


2020 ◽  
Author(s):  
Deborah Wall-Palmer ◽  
Arie W Janssen ◽  
Erica Goetze ◽  
Le Qin Choo ◽  
Lisette Mekkes ◽  
...  

Abstract Background: The aragonite shelled, planktonic gastropod family Atlantidae (shelled heteropods) is likely to be one of the first groups to be impacted by imminent ocean changes, including ocean warming and ocean acidification. With a fossil record spanning at least 100 Million years (Ma), atlantids have experienced and survived global-scale ocean changes and extinction events in the past. However, the diversification patterns and tempo of evolution in this family are largely unknown. Results: Based on a concatenated maximum likelihood phylogeny of three genes (cytochrome c oxidase subunit 1 mitochondrial DNA, 28S and 18S ribosomal rRNA) we show that the three extant genera of the family Atlantidae, Atlanta, Protatlanta and Oxygyrus, form monophyletic groups. The genus Atlanta is split into two groups, one exhibiting smaller, well ornamented shells, and the other having larger, less ornamented shells. The fossil record, in combination with a fossil-calibrated phylogeny, suggests that large scale atlantid extinction was accompanied by considerable and rapid diversification over the last 25 Ma, potentially driven by vicariance events. Conclusions: Now confronted with a rapidly changing modern ocean, the ability of atlantids to survive past global change crises gives some optimism that they may be able to persist through the Anthropocene.


2008 ◽  
Vol 14 ◽  
pp. 41-53
Author(s):  
David Sepkoski

From the beginning of paleontology's existence as a distinct professional community in the early 20th century, paleontologists have argued about ‘where’ the discipline fits among the natural sciences. Long told that paleontologists ought to be content with a subsidiary role as mere documenters of evolutionary change or as stratigraphical ‘handmaidens' to geology, over the past hundred years many paleontologists have actively resisted restrictive pigeonholing and attempted to establish paleontology as an autonomous discipline with status equal to its cousins biology and geology. This essay will survey some of the efforts at paleontological ‘activism’ over the past century, focusing particularly on institutional placement, intellectual contributions, and the use of arguments about the adequacy of the fossil record to bolster claims for disciplinary status.


2020 ◽  
Author(s):  
Deborah Wall-Palmer ◽  
Arie W Janssen ◽  
Erica Goetze ◽  
Le Qin Choo ◽  
Lisette Mekkes ◽  
...  

Abstract The aragonite shelled, planktonic gastropod family Atlantidae (shelled heteropods) is likely to be one of the first groups to be impacted by imminent ocean changes, including ocean warming and ocean acidification. With a fossil record spanning at least 100 Million years (Ma), atlantids have experienced and survived global-scale ocean changes and extinction events in the past. However, the diversification patterns and tempo of evolution in this family are largely unknown. Based on a concatenated maximum likelihood phylogeny of three genes (cytochrome c oxidase subunit 1 mitochondrial DNA, 28S and 18S ribosomal rRNA) we show that the three extant genera of the family Atlantidae, Atlanta, Protatlanta and Oxygyrus, form monophyletic clades. The genus Atlanta is split into two groups, one exhibiting smaller, well ornamented shells, and the other having larger, less ornamented shells. The fossil record, in combination with a fossil-calibrated phylogeny suggest that large scale atlantid extinction was accompanied by considerable and rapid diversification over the last 25 Ma, potentially driven by vicariance events. Now confronted with a rapidly changing modern ocean, the ability of atlantids to survive past global change crises gives some optimism that they may be able to persist through the Anthropocene.


2020 ◽  
Author(s):  
Lungwani Muungo

The purpose of this review is to evaluate progress inmolecular epidemiology over the past 24 years in canceretiology and prevention to draw lessons for futureresearch incorporating the new generation of biomarkers.Molecular epidemiology was introduced inthe study of cancer in the early 1980s, with theexpectation that it would help overcome some majorlimitations of epidemiology and facilitate cancerprevention. The expectation was that biomarkerswould improve exposure assessment, document earlychanges preceding disease, and identify subgroupsin the population with greater susceptibility to cancer,thereby increasing the ability of epidemiologic studiesto identify causes and elucidate mechanisms incarcinogenesis. The first generation of biomarkers hasindeed contributed to our understanding of riskandsusceptibility related largely to genotoxic carcinogens.Consequently, interventions and policy changes havebeen mounted to reduce riskfrom several importantenvironmental carcinogens. Several new and promisingbiomarkers are now becoming available for epidemiologicstudies, thanks to the development of highthroughputtechnologies and theoretical advances inbiology. These include toxicogenomics, alterations ingene methylation and gene expression, proteomics, andmetabonomics, which allow large-scale studies, includingdiscovery-oriented as well as hypothesis-testinginvestigations. However, most of these newer biomarkershave not been adequately validated, and theirrole in the causal paradigm is not clear. There is a needfor their systematic validation using principles andcriteria established over the past several decades inmolecular cancer epidemiology.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 701-710 ◽  
Author(s):  
B. L. Reidy ◽  
G. W. Samson

A low-cost wastewater disposal system was commissioned in 1959 to treat domestic and industrial wastewaters generated in the Latrobe River valley in the province of Gippsland, within the State of Victoria, Australia (Figure 1). The Latrobe Valley is the centre for large-scale generation of electricity and for the production of pulp and paper. In addition other industries have utilized the brown coal resource of the region e.g. gasification process and char production. Consequently, industrial wastewaters have been dominant in the disposal system for the past twenty-five years. The mixed industrial-domestic wastewaters were to be transported some eighty kilometres to be treated and disposed of by irrigation to land. Several important lessons have been learnt during twenty-five years of operating this system. Firstly the composition of the mixed waste stream has varied significantly with the passage of time and the development of the industrial base in the Valley, so that what was appropriate treatment in 1959 is not necessarily acceptable in 1985. Secondly the magnitude of adverse environmental impacts engendered by this low-cost disposal procedure was not imagined when the proposal was implemented. As a consequence, clean-up procedures which could remedy the adverse effects of twenty-five years of impact are likely to be costly. The question then may be asked - when the total costs including rehabilitation are considered, is there really a low-cost solution for environmentally safe disposal of complex wastewater streams?


2019 ◽  
Vol 19 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Qihui Wu ◽  
Hanzhong Ke ◽  
Dongli Li ◽  
Qi Wang ◽  
Jiansong Fang ◽  
...  

Over the past decades, peptide as a therapeutic candidate has received increasing attention in drug discovery, especially for antimicrobial peptides (AMPs), anticancer peptides (ACPs) and antiinflammatory peptides (AIPs). It is considered that the peptides can regulate various complex diseases which are previously untouchable. In recent years, the critical problem of antimicrobial resistance drives the pharmaceutical industry to look for new therapeutic agents. Compared to organic small drugs, peptide- based therapy exhibits high specificity and minimal toxicity. Thus, peptides are widely recruited in the design and discovery of new potent drugs. Currently, large-scale screening of peptide activity with traditional approaches is costly, time-consuming and labor-intensive. Hence, in silico methods, mainly machine learning approaches, for their accuracy and effectiveness, have been introduced to predict the peptide activity. In this review, we document the recent progress in machine learning-based prediction of peptides which will be of great benefit to the discovery of potential active AMPs, ACPs and AIPs.


Sign in / Sign up

Export Citation Format

Share Document