Interactions of quizalofop-p-ethyl mixed with contact herbicides in ACCase-resistant rice production

2019 ◽  
Vol 33 (2) ◽  
pp. 233-238 ◽  
Author(s):  
Samer Y. Rustom ◽  
Eric P. Webster ◽  
David C. Blouin ◽  
Benjamin M. McKnight

AbstractA field study was conducted in 2015 and 2016 near Crowley, LA, to evaluate antagonistic, synergistic, or neutral interactions of quizalofop when mixed with contact herbicides labeled for use in rice production. Quizalofop was applied at 120 g ai ha−1. Mixture herbicides included bentazon at 1,050 g ai ha−1, carfentrazone at 18 g ai ha−1, propanil at 3,360 g ai ha−1, saflufenacil at 25 g ai ha−1, and thiobencarb at 3,360 g ai ha−1. A second application of quizalofop at 120 g ha−1 was made at 28 d after the initial application (DAIT) to evaluate control of weeds escaping the initial treatment. At 14 and 28 DAIT, red rice, ‘CLXL-745’, and ‘CL-111’ treated with quizalofop plus propanil indicated an antagonistic response with an observed control of 69% to 71% compared with an expected control of 92% to 94%. Barnyardgrass treated with the same mixture also indicated an antagonistic response at 14 and 28 DAIT with an observed control of 16% compared with an expected control of 94%. Barnyardgrass treated with quizalofop plus saflufenacil indicated an antagonistic response at 14 DAIT; however, the same mixture produced a neutral response by 28 DAIT. In addition, a second application of quizalofop was not able to overcome the antagonism observed with a quizalofop plus propanil mixture at 14 and 28 DAIT for red rice, CLXL-745, CL-111, or barnyardgrass control. Quizalofop mixed with carfentrazone or thiobencarb produced a neutral response for all weeds evaluated at each evaluation date.

2021 ◽  
pp. 1-24
Author(s):  
L. Connor Webster ◽  
Eric P. Webster ◽  
David C. Blouin ◽  
Benjamin M. McKnight

A field study was conducted in 2017 and 2018 at the LSU Agricultural Center H. Rouse Caffey Rice Research Station (RRS) near Crowley, LA. to evaluate the impact of reduced rates of halosulfuron on quizalofop activity in Louisiana rice production. Halosulfuron and a prepackaged mixture of halosulfuron plus thifensulfuron were evaluated at 0, 17, 35, or 53 g ai ha−1 and 34 or 53 g ai ha−1, respectively, in a mixture with quizalofop at 120 g ai ha-1. Control of (%) of barnyardgrass and red rice as well as two non-ACCase resistant rice lines, CL-111 and CLXL-745, were recorded at 14 and 28 d after treatment (DAT). The red rice, CL-111, and CLXL-745 represented a weedy rice population. Across all species evaluated at 14 DAT, all halosulfuron and halosulfuron plus thifensulfuron containing mixtures resulted in antagonism with an observed control of 79 to 90%, compared to an expected control of 96 to 99%. At 28 DAT, all halosulfuron containing mixtures resulted in neutral interactions for barnyardgrass control. Quizalofop mixed with halosulfuron plus thifensulfuron at the lower rate of 34 g ha−1 was able to overcome the antagonism compared with the higher rate of 53 g ha−1 for barnyardgrass control at 28 DAT. Both the high and the low rate of halosulfuron plus thifensulfuron resulted in antagonistic interaction for red rice, CL-111, and CLXL-745 control at 28 DAT. This research suggests that mixing quizalofop with halosulfuron plus thifensulfuron should be avoided, especially at the higher rate of 53 g ha−1.


2018 ◽  
Vol 32 (3) ◽  
pp. 297-303 ◽  
Author(s):  
Samer Y. Rustom ◽  
Eric P. Webster ◽  
David C. Blouin ◽  
Benjamin M. McKnight

AbstractA field study was conducted in 2015 and 2016 at the H. Rouse Caffey Rice Research Station (RRS) to evaluate antagonistic, synergistic, or neutral interactions of quizalofop when mixed with ALS-inhibiting herbicides labeled in rice production. Quizalofop was applied at 120 g ai ha−1. Mixture herbicides included penoxsulam at 40 g ai ha−1, penoxsulam+triclopyr at 352 g ai ha−1, halosulfuron at 53 g ai ha−1, bispyribac at 34 g ai ha−1, orthosulfamuron+halosulfuron at 94 g ai ha−1, orthosulfamuron+quinclorac at 491 g ai ha−1, imazosulfuron at 211 g ai ha−1, and bensulfuron at 43 g ai ha−1. All ALS herbicides mixed with quizalofop indicated antagonistic responses for red rice, CL-111, CLXL 745, or barnyardgrass control at either 14 or 28 days after treatment (DAT). At 28 DAT, quizalofop mixed with penoxsulam or bispyribac controlled barnyardgrass 34 to 38%, compared with an expected control of 97%. In addition, these same mixtures controlled red rice, CL-111, and CLXL-745 61 to 67% at 28 DAT compared with an expected control of 96 to 97%. A second application of quizalofop at 120 g ha−1was applied at 28 DAT. At 42 DAT, neutral responses were indicated for all mixtures except with quizalofop mixed with penoxsulam containing products.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Z. Masni ◽  
M. E. Wasli

Global demand for high-quality rice and healthy food has increased, especially to the affluent and health-conscious consumers. Red rice has been consumed because of its health benefits. Red rice has met the concepts of productivity and quality that emerged to supply the demands for products that improve the eating pattern of its consuming population. Red rice is based on food industries especially for nutrition-based food products and baby food products. For the case on Malaysia, limited domestic supplies of red rice have led to full dependency on imported red rice supplies in the country. Recent statistics showed that the Sarawak state can be one of the potential areas for the development of red rice production due to its vast land resources; proper guidelines which suit the agroecosystem in Sarawak for cultivation of red rice are essential. As for rice production in general, proper application of fertilizers enhances the yield and to a certain extent sustains soil productivity. Considering the needs to establish a proper fertilizing program especially for red rice production in Sarawak, a preliminary study was conducted to evaluate the yield and yield components of red rice variety (MRM 16) with three levels of NPK fertilizers (Treatment 1, control; Treatment 2, 60 : 35 : 40; Treatment 3, 120 : 70 : 80; and Treatment 4, 180 : 105 : 120 (proportions of N, P2O5, and K2O·ha−1, respectively)). The experiment was conducted in the pot trial during main season 2016 (December 2016–April 2017). The yield parameters including rice yield, panicle no./m2, 1000-grain weight, spikelet number per panicle, and percentage of filled spikelets were collected. The results showed that yield was not significantly affected by the increment of the NPK fertilizer added at a rate of more than 60 kg/ha N, 35 kg/ha P, and 40 kg/ha K (T2). From the study, it was observed that the yield and yield components of red rice variety (MRM 16) were best in T2 (60 kg/ha N, 35 kg/ha P, and 40 kg/ha K).


2019 ◽  
Vol 34 (2) ◽  
pp. 180-187
Author(s):  
L. Connor Webster ◽  
Eric P. Webster ◽  
David C. Blouin ◽  
Benjamin M. McKnight

AbstractAcetyl co-enzyme A carboxylase (ACCase)-resistant rice allows quizlaofop-p-ethyl to be applied as a POST control of troublesome grass weeds. A field study was conducted in 2017 and 2018 at the H. Rouse Caffey Rice Research Station near Crowley, LA, to evaluate the influence of a crop oil concentrate (COC), a silicon-based surfactant plus a nitrogen source (SNS), or a high-concentrate COC (HCOC) in overcoming the grass weed control antagonism of quizalofop-p-ethyl when mixed with bispyribac-Na. Quizalofop-p-ethyl was applied at 120 g ai ha−1, bispyribac-Na was applied at 34 g ai ha−1, and all adjuvants were applied at 1% vol/vol. Antagonistic interactions were observed at 14 d after treatment (DAT) when quizalofop-p-ethyl was mixed with bispyribac-Na with no adjuvant for control of barnyardgrass, the non–ACCase-tolerant rice cultivars ‘CL-111’ and ‘CLXL-745’, and red rice. At 14 DAT, antagonism of quizalofop-p-ethyl for control of barnyardgrass was observed when mixed with bispyribac-Na plus COC, SNS, or HCOC, with an observed control of 43%, 63%, and 86%, respectively, compared with an expected control of 95% for quizalofop-p-ethyl alone. However, the antagonism of quizalofop-p-ethyl when mixed with bispyribac-Na plus HCOC for barnyardgrass control at 14 DAT was overcome by 28 DAT, with an observed control of 91%, compared with an expected control of 97%. Synergistic or neutral interactions were observed at 14 and 28 DAT when COC, SNS, or HCOC was added to a mixture of quizalofop-p-ethyl plus bispyribac-Na for CL-111, CLXL-745, and red rice control. According to the results of this study, HCOC is the most effective adjuvant for quizalofop-p-ethyl and bispyribac-Na mixtures for control of weedy rice and barnyardgrass.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Eric P. Webster ◽  
Samer Y. Rustom ◽  
Benjamin M. McKnight ◽  
David C. Blouin ◽  
Gustavo M. Teló

A study was conducted near Crowley, Louisiana, to evaluate the efficacy of quizalofop-p-ethyl mixed with different synthetic auxin and ACCase-inhibiting herbicides for barnyardgrass and weedy rice control in rice production systems. Quizalofop was applied at 0 or 120 g ai·ha−1 mixed with 2,4-D at 1336 g ai·ha−1, triclopyr at 282 g ai·ha−1, quinclorac at 420 g ai·ha−1, cyhalofop-butyl at 314 g ai·ha−1, or fenoxaprop-p-ethyl at 122 g ai·ha−1. Cyhalofop, fenoxaprop, 2,4-D, quinclorac, and triclopyr antagonized quizalofop for barnyardgrass control at 14 days after treatment (DAT). At 28 DAT, an antagonistic response persisted for barnyardgrass control, except when cyhalofop was mixed with quizalofop, which indicated a neutral response. Red rice, CLXL-745, and CL-111 control decreased due to antagonism of quizalofop when mixed with 2,4-D. However, quinclorac, triclopyr, cyhalofop, or fenoxaprop mixed with quizalofop resulted in a neutral response for red rice, CLXL-745, and CL-111 control at 28 DAT.


Weed Science ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yung-Fen Huang ◽  
Dong-Hong Wu ◽  
Chih-Lu Wang ◽  
Pei-Rong Du ◽  
Chih-Yun Cheng ◽  
...  

2019 ◽  
Vol 34 (2) ◽  
pp. 188-192
Author(s):  
Eric P. Webster ◽  
Gustavo M. Teló ◽  
Samer Y. Rustom ◽  
Benjamin M. McKnight ◽  
David C. Blouin

AbstractA field study was conducted during the 2016 and 2017 crop seasons at the LSU AgCenter H. Rouse Caffey Rice Research Station to evaluate weed control and rice yield after quizalofop-p-ethyl applications in water-seeded coenzyme A carboxylase (ACCase)–resistant ‘PVLO1’ long-grain rice production utilizing different flood systems, application timings, and quizalofop rates. The initial application of quizalofop was applied at five timings beginning when ‘PVLO1’ rice was at the coleoptile stage (PEG) through the one- to two-tiller stage. A total quizalofop rate of 240 g ai ha–1 was split into two applications: 97 followed by 143 g ha–1 or 120 followed by 120 g ai ha–1 in both pinpoint and delayed flood water-seeded management systems. A second quizalofop application was applied 14 d after initial treatment (DAIT). At 14 DAIT, a reduction in control of barnyardgrass and red rice was observed by delaying the initial quizalofop application to the two- to four-tiller stage compared with rice treated at earlier growth stages. At 42 DAIT, control of barnyardgrass was 94% to 96%, and red rice was 98% following the second application of quizalofop, regardless of initial application timing. Rice treated with quizalofop at the PEG and two- and three-leaf stage resulted in a rice height of 104 cm at harvest compared with 96 to 100 cm when the initial application of quizalofop was delayed to later growth stages. Applying the initial application of quizalofop to rice at the PEG timing in the pinpoint or the delayed flood system resulted in a total gross value per hectare of $450 and $590, respectively. Within each flood system, delaying the initial application of quizalofop to the one- to two-tiller stage resulted in a gross per-hectare value reduction of $100 ha-1 in the pinpoint flood and $110 ha-1 in the delayed flood.


2020 ◽  
Vol 34 (4) ◽  
pp. 506-510
Author(s):  
Samer Y. Rustom ◽  
Eric P. Webster ◽  
Benjamin M. McKnight ◽  
David C. Blouin

AbstractA field study was conducted in 2015 and 2016 at the H. Rouse Caffey Rice Research Station near Crowley, Louisiana, to evaluate the interactions of quizalofop and a mixture of propanil plus thiobencarb applied sequentially or mixed to control weedy rice and barnyardgrass. Visual weed control evaluations occurred at 14, 28, and 42 d after treatment (DAT). Quizalofop was applied at 120 g ai ha−1 at 7, 3, and 1 d before and after propanil plus thiobencarb were each applied at 3,360 g ai ha−1. In addition, quizalofop was applied alone and in a mixture with propanil plus thiobencarb at day 0. Control of red rice ‘CL-111’ and ‘CLXL-745’ was greater than 91% when quizalofop was applied alone at day 0, similar to control for quizalofop applied 7, 3, and 1 d prior to propanil plus thiobencarb at all evaluation dates. Control of the same weeds treated with quizalofop plus propanil plus thiobencarb applied in a mixture at day 0 was 70% to 76% at each evaluation date, similar to quizalofop applied 1 or 3 d after propanil plus thiobencarb. A similar trend in control of barnyardgrass by 88% to 97% occurred when quizalofop was applied alone and by 48% to 53% at 14, 28, and 42 DAT when the mixture was used. ‘PVL01’ rough rice yield was 4,060 kg ha−1 when treated with quizalofop alone; however, yield was reduced to 3,180 kg ha−1 when it was treated with quizalofop mixed with propanil plus thiobencarb at day 0, similar to PVL01 rice treated with quizalofop 1 or 3 d following the propanil plus thiobencarb application.


2004 ◽  
Vol 13 (1) ◽  
pp. 103-112 ◽  
Author(s):  
J. Messeguer ◽  
V. Marfà ◽  
M.M. Català ◽  
E. Guiderdoni ◽  
E. Melé
Keyword(s):  
Red Rice ◽  

Sign in / Sign up

Export Citation Format

Share Document