Seed treatments alleviate dormancy of field bindweed (Convolvulus arvensisL.)

2018 ◽  
Vol 32 (5) ◽  
pp. 564-569 ◽  
Author(s):  
Renci Xiong ◽  
Ying Wang ◽  
Hanwen Wu ◽  
Yan Ma ◽  
Weili Jiang ◽  
...  

AbstractField bindweed, a member of the Convolvulaceae family, is a problematic perennial weed in cotton fields and orchards in northwest China. The species exhibits strong seed dormancy, causing delayed germination. A clear understanding of the mechanisms involved in alleviating seed dormancy is important for effective plant propagation and successful management of field bindweed. Experiments were conducted to investigate seed germination and radicle growth of field bindweed by breaking seed dormancy using mechanical scarification, sulfuric acid, hot-water scarification, cold stratification, and chemical treatment. Chemical treatments (gibberellic acid or potassium nitrate) had no effect on breaking seed dormancy, whereas mechanical scarification (sandpaper and blade) resulted in 92% to 98% seed germination, indicating that seed dormancy of field bindweed was mainly due to the presence of a hard seed coat. Seeds pretreated with 80% sulfuric acid for 15 to 60 min or 98% sulfuric acid for 15 to 30 min had germination rates above 80%, and soaking seeds in 70 C water for 4 to 16 min or in boiling water for 5 to 20s were effective in breaking seed dormancy but had no effect on the radicle growth of field bindweed. Cold stratification at 5 C for 2 to 8wk partially accelerated seed dormancy release, resulting in 53% to 67% seed germination. Results indicated that field bindweed could potentially form a persistent soil seed bank with physically dormant seed; therefore, strategies for eliminating seed production should be adopted.

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


2012 ◽  
Vol 40 (2) ◽  
pp. 183 ◽  
Author(s):  
Elias PIPINIS ◽  
Elias MILIOS ◽  
Olga MAVROKORDOPOULOU ◽  
Christina GKANATSIOU ◽  
Maria ASLANIDOU ◽  
...  

Sexual propagation of Prunus mahaleb is difficult due to seed dormancy. To overcome dormancy and maximize germination, various pretreatments have been applied, including stratification (warm and cold), gibberellic acid (GA3), sulfuric acid scarification (AS), and endocarp removal. The results show that warm stratification (WS) prior to cold stratification (CS) does not improve seed germination and a long period of WS (3 months) is disastrous for germination. CS alone (up to 4 months) has been found to hasten and increase seed germination. Pretreatment of the seeds with exogenous GA3, during the CS period, has been observed to result in significantly higher seed germination. AS of seeds for 45 minutes prior to GA3 (1000 ppm for 24 hours) plus CS (up to 1 month) pretreatment has been considered to reduce the mechanical resistance of endocarp and improve germination. However, extended time of AS (180 minutes) prior to GA3 plus CS pretreatment has been found to harm the seeds. The removal of endocarp has been noted to significantly improve germination. Seeds without endocarp, which were pretreated with GA3 (1000 or 2000 ppm for 24 hours) and then cold stratified for 1 month, have been noted to exhibit the highest germination percentages.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 319
Author(s):  
Yuhan Tang ◽  
Keliang Zhang ◽  
Yin Zhang ◽  
Jun Tao

Sorbus alnifolia (Siebold & Zucc.) K.Koch (Rosaceae) is an economically important tree in the temperate forests of Eastern China. In recent decades, ever-increasing use and modification of forestlands have resulted in major degeneration of the natural habitat of S. alnifolia. Moreover, S. alnifolia seeds germinate in a complicated way, leading to a high cost of propagation. The current study aimed to determine the requirements for breaking seed dormancy and for germination as well as to characterize the type of seed dormancy present in this species. Moreover, the roles of temperature, cold/warm stratification, and gibberellic acid (GA3) in breaking dormancy were tested combined with a study of the soil seed bank. The results showed that intact seeds of S. alnifolia were dormant, requiring 150 days of cold stratification to achieve the maximum germination percentage at 5/15 °C. Exposure of the seeds to ranges of temperatures at 15/25 °C and 20/30 °C resulted in secondary dormancy. Scarifying seed coat and partial removal of the cotyledon promoted germination. Compared with long-term cold stratification, one month of warm stratification plus cold stratification was superior in breaking dormancy. Application of GA3 did not break the dormancy during two months of incubation. Seeds of S. alnifolia formed a transient seed bank. The viability of freshly matured S. alnifolia seeds was 87.65% ± 11.67%, but this declined to 38.25% after 6-months of storage at room temperature. Seeds of S. alnifolia have a deep physiological dormancy; cold stratification will be useful in propagating this species. The long chilling requirements of S. alnifolia seeds would avoid seedling death in winter.


2020 ◽  
Vol 15 (1) ◽  
pp. 1-6
Author(s):  
Vincent Ishola Esa ◽  
Taiwo Ayanniyin Ayanbamiji ◽  
Ayobami Daniel Abo

2016 ◽  
Vol 36 (87) ◽  
pp. 195
Author(s):  
Adriano Gonçalves Pereira ◽  
Eniel David Cruz ◽  
Hellen Síglia Demétrio Barros

Seed dormancy is a phenomenon observed in several tropical species. This condition causes low and non-uniform germination. The present study was designed to identify an efficient method of breaking seed dormancy in Stryphnodendron pulcherrimum. Seeds of four mother plants were subjected to the following treatments: immersion in sulfuric acid for 2, 4, 6, 8, 10 and 12 min and scarification on 150-grit sandpaper. Seeds were sown on substrate containing sand and sawdust (1:1). It was evaluate the days to onset seedlings emergence, seedlings emergence (SE), emergence speed index (ESI), germination (G), hard seeds (HS), dead seeds (DS), dormant seeds (DMS), abnormal seedlings (AS) and dry mass of aerial part (DMAP) and roots (DMR). The experimental design was completely randomized with four replications of 25 seeds for each treatment. Data were subjected to analysis of variance and means compared by Tukey's test (p < 0.05). Significant differences among treatments were observed for ESI, SE, G, HS, DMAP and DMR. Highest HS was observed in control treatment (85%). Highest G was observed in seeds scarified with sulfuric acid for 10 min (82%) and 12 min (74%). These treatments also showed highest ESI, DMAP and DMR, indicating that these scarification treatments were the most efficient in overcoming dormancy.


2017 ◽  
Vol 23 (1) ◽  
pp. 72 ◽  
Author(s):  
Thalita Neves Marostega ◽  
Petterson Baptista Da Luz ◽  
Armando Reis Tavares ◽  
Leonarda Grillo Neves ◽  
Severino De Paiva Sobrinho

The Passiflora L. genus covers a diversity of wild species with ornamental potential, especially due to the intrinsic beauty of its exotic flowers, flowering more than once a year and the lush foliage. However, Passiflora seeds present dormancy complicating seed germination and the establishment of commercial plant production with species with high ornamental potential. This study was conducted to determine the best pre-germination treatments to overcome seed dormancy for Passiflora quadrangularis, P. nitida, P. foetida, P. eichleriana, P. alata, P. cincinnata, P. mucronata, P. micropetala, P. suberosa, P. morifolia and P. tenuifila. The experimental design was completely randomized, with five treatments and four replicates, with 25 seeds per plot. Pre-germination treatments were: seeds soaked in 1,000 mg L- 1 GA3 (gibberellic acid) for 6 hours, seeds soaked in 0.2 % KNO3 (potassium nitrate) for 24 hours, seeds soaked in 1 % KNO3 for 24 hours, partial seedcoat scarification with sandpaper number 120 and control (seeds untreated). Percentage of germination, germination velocity index and radicle length were evaluated for all species. The results showed that GA3 was effective to overcome seed dormancy in P. suberosa (86%), P. morifolia (68 %) and P. tenuifila (54%). KNO3 1% had significant effect on overcoming dormancy in seeds of P. eichleriana (66%) and scarification with sandpaper increased seed germination of P. micropetala (38%).


Sign in / Sign up

Export Citation Format

Share Document