Effects of cold stratification, temperature, light and salinity on seed germination and radicle growth of the desert halophyte shrub, Kalidium caspicum (Chenopodiaceae)

2007 ◽  
Vol 54 (3) ◽  
pp. 241-248 ◽  
Author(s):  
Xiaoxia Qu ◽  
Jerry M. Baskin ◽  
Lei Wang ◽  
Zhenying Huang
2018 ◽  
Vol 32 (5) ◽  
pp. 564-569 ◽  
Author(s):  
Renci Xiong ◽  
Ying Wang ◽  
Hanwen Wu ◽  
Yan Ma ◽  
Weili Jiang ◽  
...  

AbstractField bindweed, a member of the Convolvulaceae family, is a problematic perennial weed in cotton fields and orchards in northwest China. The species exhibits strong seed dormancy, causing delayed germination. A clear understanding of the mechanisms involved in alleviating seed dormancy is important for effective plant propagation and successful management of field bindweed. Experiments were conducted to investigate seed germination and radicle growth of field bindweed by breaking seed dormancy using mechanical scarification, sulfuric acid, hot-water scarification, cold stratification, and chemical treatment. Chemical treatments (gibberellic acid or potassium nitrate) had no effect on breaking seed dormancy, whereas mechanical scarification (sandpaper and blade) resulted in 92% to 98% seed germination, indicating that seed dormancy of field bindweed was mainly due to the presence of a hard seed coat. Seeds pretreated with 80% sulfuric acid for 15 to 60 min or 98% sulfuric acid for 15 to 30 min had germination rates above 80%, and soaking seeds in 70 C water for 4 to 16 min or in boiling water for 5 to 20s were effective in breaking seed dormancy but had no effect on the radicle growth of field bindweed. Cold stratification at 5 C for 2 to 8wk partially accelerated seed dormancy release, resulting in 53% to 67% seed germination. Results indicated that field bindweed could potentially form a persistent soil seed bank with physically dormant seed; therefore, strategies for eliminating seed production should be adopted.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2424 ◽  
Author(s):  
Tăbăcaru ◽  
Botezatu ◽  
Horincar ◽  
Furdui ◽  
Dinică

A family of fifteen quaternary ammonium salts (QAs), bearing the 1,2-bis(4-pyridyl)ethane core, were obtained using for the first time two different green methods, such as microwave (MW) and ultrasounds (US) irradiation, with very good yields and in much shorter times compared to the classical method, and an assay on their antimicrobial action against Escherichia coli (E. coli) was carried out. While 12 to 24 hours were required for complete alkylation of 1,2-bis(4-pyridyl)ethane by reactive halogenated derivatives in anhydrous solvent under reflux conditions, MW and US irradiation reduced the reaction time and the desired products were achieved in a few min. One of the aims of this study was to evaluate the antibacterial potential of the synthesized QAs against pathogenic bacteria, along with their impact on germination activity of wheat seeds (Triticum aestivum L.). The antibacterial activity of the QAs against Escherichia coli was explored by determining the minimum inhibitory concentration (MIC). The MIC values varied from 0.312 to 2.5 mg/mL, highlighting the lowest values attained for the derivatives containing methoxy, chlorine and benzofurane functional groups. The viability of aerobic bacteria was determined with the Tetrazolium/Formazan Test, a method that was found to be the best alternative approach with respect to the difuzimetric method. Seeds of Triticum aestivum L. were used for the evaluation of the germination indicators, such as seed germination (SG), the relative seed germination (RSG), the relative radicle growth (RRG), and the seed germination index (GI). The toxicity studies of QAs 1, 4 and 7, at two different concentrations, showed no inhibitory effect on seed germination.


2008 ◽  
Vol 32 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Renata Braga Souza Lima ◽  
José Francisco de Carvalho Gonçalves ◽  
Silvana Cristina Pando ◽  
Andréia Varmes Fernandes ◽  
André Luis Wendt dos Santos

This study aimed to characterize protein, oil, starch and soluble sugar mobilization as well as the activity of alpha-amylase during rosewood seed germination. Germination test was carried out at 25°C and the following parameters were analyzed: percentage of germination, initial, average, and final germination time. Seed reserve quantification was monitored in quiescent seeds and during different stages of radicle growth. Starch mobilization was studied in function of a-amylase activity. Germination reached 87.5% at the initial, average, and final time of 16, 21 and 30 days, respectively. Oil mobilization showed a negative linear behavior, decreasing 40% between the first and the last stage analyzed, whereas protein levels increased 34.7% during the initial period of germination. Starch content (46.4%) was the highest among those of the metabolites analyzed and starch mobilization occurred inversely to the observed for soluble sugars; alpha-amylase activity increased until the 15th day, a period before radicle emission and corresponding to the highest starch mobilization. The high percentage of rosewood seed germination may be related to the controlled condition used in the germination chamber as well as to high seed reserve mobilization, in special oil and starch.


2014 ◽  
Vol 62 (43) ◽  
pp. 10485-10492 ◽  
Author(s):  
Alessio Cimmino ◽  
Mónica Fernández-Aparicio ◽  
Anna Andolfi ◽  
Sara Basso ◽  
Diego Rubiales ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


Author(s):  
Carmen BEINSAN ◽  
Renata SUMALAN ◽  
Giancarla VELICEVICI ◽  
Adriana CIULCA ◽  
Radu SUMALAN

The purpose of the experiment was to highlight the germination of sunflower seeds affected by the presence of saline stress and the identification of tolerant genotypes. The biological material was represented by sunflower cvs. (Helianthus annuus L.): Coril, Select, Santiago and Fundulea-206. To simulate the saline conditions, germination solutions of sodium chloride (NaCl) were used with concentrations corresponding to the osmotic pressures -6 and -10 atm and the control seed hydration was performed with distilled water. Determination of seed germination, growth of seedling, percentage of plumules dry matter, chlorophyll content and free proline were performed. The experimental data obtained suppose the existence in the assimilation apparatus of sunflowers seedling subjected to stress a competitive chlorophyll/free proline biosynthesis processes. The experimental results regarding the effect of salinity on seed germination and seedling growth revealed important differences between genotypes. The radicle growth in the germination process were strongly affected by saline excess, with significant differences between cultivars. Saline stress results in significant reductions in the amount of chlorophyll, and high levels of free proline. It can be observed that with the increase of the stress level the percentage of the dry matter increases, indicating an accentuated water deficit.


Sign in / Sign up

Export Citation Format

Share Document