scholarly journals Methods of breaking seed dormancy for ornamental passion fruit species

2017 ◽  
Vol 23 (1) ◽  
pp. 72 ◽  
Author(s):  
Thalita Neves Marostega ◽  
Petterson Baptista Da Luz ◽  
Armando Reis Tavares ◽  
Leonarda Grillo Neves ◽  
Severino De Paiva Sobrinho

The Passiflora L. genus covers a diversity of wild species with ornamental potential, especially due to the intrinsic beauty of its exotic flowers, flowering more than once a year and the lush foliage. However, Passiflora seeds present dormancy complicating seed germination and the establishment of commercial plant production with species with high ornamental potential. This study was conducted to determine the best pre-germination treatments to overcome seed dormancy for Passiflora quadrangularis, P. nitida, P. foetida, P. eichleriana, P. alata, P. cincinnata, P. mucronata, P. micropetala, P. suberosa, P. morifolia and P. tenuifila. The experimental design was completely randomized, with five treatments and four replicates, with 25 seeds per plot. Pre-germination treatments were: seeds soaked in 1,000 mg L- 1 GA3 (gibberellic acid) for 6 hours, seeds soaked in 0.2 % KNO3 (potassium nitrate) for 24 hours, seeds soaked in 1 % KNO3 for 24 hours, partial seedcoat scarification with sandpaper number 120 and control (seeds untreated). Percentage of germination, germination velocity index and radicle length were evaluated for all species. The results showed that GA3 was effective to overcome seed dormancy in P. suberosa (86%), P. morifolia (68 %) and P. tenuifila (54%). KNO3 1% had significant effect on overcoming dormancy in seeds of P. eichleriana (66%) and scarification with sandpaper increased seed germination of P. micropetala (38%).

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


2018 ◽  
Vol 36 ◽  
Author(s):  
M. REZVANI ◽  
S.A. SADATIAN ◽  
H. NIKKHAHKOUCHAKSARAEI

ABSTRACT: Our knowledge about seed dormancy breaking and environmental factors affecting seed germination of greater bur-parsley (Turgenia latifolia) is restricted. This study has addressed some seed dormancy breaking techniques, including different concentrations of gibberellic acid (GA3) and potassium nitrate (KNO3), leaching duration, physical scarification as well as some environmental factors effective on seed germination such as salt and drought stresses, pH and seed planting depth. Seed germination was promoted with lower concentrations of KNO3 (0.01 to 0.02 g L-1), while higher concentrations reduced germination percentage. Seed dormancy was declined by low concentrations of GA3 up to 100 ppm. Seeds of greater bur-parsley germinated in a range of pH from 3 to 7. With enhancement of drought and salt stresses, seed germination decreased. Also, there was no seed germination in a high level of stresses. Seedling emergence reduced as planting depth increased. Use of GA3, KNO3, leaching and physical scarification had a positive effect on seed dormancy breaking of greater bur-parsley. The information from the study increases our knowledge about seed dormancy breaking techniques, response of germination to drought and salt stresses and also determination of distribution regions of greater bur-parsley in the future.


2020 ◽  
Vol 15 (1) ◽  
pp. 1-6
Author(s):  
Vincent Ishola Esa ◽  
Taiwo Ayanniyin Ayanbamiji ◽  
Ayobami Daniel Abo

2021 ◽  
Vol 34 (3) ◽  
pp. 614-620
Author(s):  
EDVAN COSTA DA SILVA ◽  
FABÍOLA VILLA ◽  
DANIEL FERNANDES DA SILVA ◽  
JEAN CARLO POSSENTI ◽  
LUCIANA SABINI DA SILVA ◽  
...  

ABSTRACT The germination process of the Annona sylvatica A.St.-Hil becomes difficult because the seeds have physical and physiological numbness. Although, the objective was to evaluate the effect the gibberellic acid can have in overcoming this physiological process. So that, aimed to evaluate the effect of the gibberellic acid in the overcoming dormancy of araticum seeds. Two different projects were developed simultaneously (plants germination in the laboratory and emergence of seedlings in seed). At the laboratory, the experimental design used was completely casualized in factorial scheme 4 x 4. Evaluating the physiological aspect of the germination and vigor. The germination of the seeds presented superior performance when they were immersed in 1200 mg.L-1 of GA3, in 24 h of imbibition, reaching 67% of germination. In the emergence of seedlings in seed, the experimental design used was to randomize blocks in factorial scheme 4 x 5 (four accesses x five periods of immersion). After 110 days, evaluating physiological aspects of emergence and vigor. The emergence varied between 32 to 45% (accesses A1 and A3) in a period of 15 to 24 h (accesses A1 and A3 or A4). High concentration and longer period of soaking in gibberellic acid promote a bigger germination of the araticum seeds. There is a difference between the accesses of the species, necessary to evaluate before being collected, and in the present study the accesses A3 is promising for harvest.


2020 ◽  
Vol 48 (2) ◽  
pp. 159-165
Author(s):  
Ganesha S. Liyanage ◽  
Catherine A. Offord ◽  
Karen D. Sommerville

We tested for dormancy in three species of Acronychia (Rutaceae) occurring in the rainforest in eastern Australia, A. imperforata, A. laevis and A. oblongifolia, by incubating fresh intact seeds on 0.8% water agar for one month at 25/10°C. Four different techniques were then tested for their effect on dormancy: (i) incubation of intact seeds on agar incorporating gibberellic acid (GA3); (ii) seed coat removal (decoating); (iii) scarification near the radicle emergence point (scarification-emergence point); and (iv) scarification opposite the radicle emergence point (scarification-back). Imbibition tests were performed to determine whether dormancy was due to an impermeable seed coat. Germination differed among treatments, but all three species showed a similar pattern. Intact seeds showed < 6% germination after one month indicating the presence of dormancy. Highest germination (> 65%) was observed following scarification-emergence point treatment. Seed coat removal also resulted in increased germination (40-47%), in comparison with intact seeds, but GA3 and scarification-back treatments did not (< 12%). Though the seedcoats of all species were permeable, increased germination responses to decoating and scarification-emergence point treatments suggest scarification is required to clear the radicle emergence point. This may be a useful dormancy-breaking technique for Acronychia spp. and may be suitable for related Rutaceae species.


Author(s):  
Monoj Sutradhar ◽  
Subhasis Samanta ◽  
Brijesh Kumar Singh ◽  
Md. Nasim Ali ◽  
Nirmal Mandal

Dormancy in rice serves as a mechanism of survival by protecting the seed from germinating in the mother plants; however, it becomes a problem in germination during sowing in soil or under in vitro conditions. This study was conducted to determine the effect of heat treatment and sodium hypochlorite (NaOCl) treatment of seeds on dormancy alleviation. The seeds included both freshly harvested seeds and one-year-old stored seeds, which were tested for germination after different types of seed treatments. Both the treatments increased the germination percentage in seeds, however, it was lesser in the case of old seeds. The best results were obtained from 2% NaOCl treatment for 24 hrs in new seeds, i.e. 92.84±0.103 % germination percentage (GP). However, the higher GP in old seeds were obtained from 48 hrs of heat-treated seeds i.e. 82.9±0.509 % GP. The results of the experiment revealed that rice seeds start to lose viability within a year due to seed dormancy, but this can be reversed with proper measures. These methods of breaking seed dormancy can be considered effective to break seed dormancy and improve seed germination in rice.


Sign in / Sign up

Export Citation Format

Share Document