scholarly journals Influence of weed size on herbicide interactions for Enlist™ and Roundup Ready® Xtend® technologies

2019 ◽  
Vol 33 (04) ◽  
pp. 569-577 ◽  
Author(s):  
Chris J. Meyer ◽  
Jason K. Norsworthy

AbstractWeed size can nfluence herbicide performance and herbicide interactions in mixtures. To control a broad range of species in soybean or cotton, POST herbicide mixtures will likely be commonplace in Roundup Ready® XtendFlex® and Enlist™ technologies. The impact of weed size on herbicide interactions that could occur in Roundup Ready XtendFlex or Enlist crops was assessed in two field experiments conducted in 2015 and 2016 at the Northeast Research and Extension Center in Keiser, AR. Combinations of glufosinate, glyphosate, dicamba, and 2,4-D were applied to either 10-cm or 30-cm weeds and evaluated for percent weed control, height reduction, and density reduction, collected 5 wk after treatment. Colby’s method was used to analyze treatments for herbicide interactions for control of barnyardgrass, Palmer amaranth, and pitted morningglory. Antagonism was identified with at least one treatment on all species. Almost all treatments were antagonistic for percent weed control, height reduction, and density reduction on barnyardgrass. When glyphosate in mixture with 2,4-D or dicamba was applied to 30-cm barnyardgrass, control declined 9% for both mixtures relative to glyphosate alone. Glufosinate plus glyphosate was antagonistic when applied to both 30-cm pitted morningglory and barnyardgrass. Glufosinate plus dicamba provided less control and density reduction of Palmer amaranth than what was expected from Colby’s equation. Overall, antagonism was more likely to be identified when applications were made to 30-cm weeds compared with 10-cm weeds. The utility of a given herbicide mixture will depend on the species present in the field and the size of those species at the time of application.

2009 ◽  
Vol 23 (3) ◽  
pp. 356-362 ◽  
Author(s):  
A. Stanley Culpepper ◽  
Alan C. York ◽  
Phillip Roberts ◽  
Jared R. Whitaker

Field experiments were conducted in Georgia to evaluate weed control and crop tolerance with glufosinate applied to ‘PHY 485 WRF®’ cotton. This glyphosate-resistant cotton also contains a gene, used as a selectable marker, for glufosinate resistance. Three experiments were maintained weed-free and focused on crop tolerance; a fourth experiment focused on control of pitted morningglory and glyphosate-resistant Palmer amaranth. In two experiments, PHY 485 WRF cotton was visibly injured 15 and 20% or less by glufosinate ammonium salt at 430 and 860 g ae/ha, respectively, applied POST two or three times. In a third experiment, glufosinate at 550 g/ha injured cotton up to 36%. Pyrithiobac or glyphosate mixed with glufosinate did not increase injury compared to glufosinate applied alone;S-metolachlor mixed with glufosinate increased injury by six to seven percentage points. Cotton injury was not detectable 14 to 21 d after glufosinate application, and cotton yields were not reduced by glufosinate or glufosinate mixtures. A program of pendimethalin PRE, glyphosate applied POST twice, and diuron plus MSMA POST-directed controlled glyphosate-resistant Palmer amaranth only 17% late in the season.S-metolachlor included with the initial glyphosate application did not increase control, and pyrithiobac increased late-season control by only 13 percentage points. Palmer amaranth was controlled 90% or more when glufosinate replaced glyphosate in the aforementioned system. Pitted morningglory was controlled 99% by all glufosinate programs and mixtures of glyphosate plus pyrithiobac. Seed cotton yields with glufosinate-based systems were at least 3.3 times greater than yields with glyphosate-based systems because of differences in control of glyphosate-resistant Palmer amaranth.


1991 ◽  
Vol 5 (4) ◽  
pp. 817-822 ◽  
Author(s):  
Marshall B. Wixson ◽  
David R. Shaw

Field experiments were established to observe the effects of adjuvants and time of application on weed control and ‘Terra-Vig 515’ soybean tolerance with POST applications of AC 263,222. A nonionic surfactant or a crop oil concentrate increased sicklepod control with AC 263,222 applied at either V2 or V6 soybean growth stages. Sicklepod control increased as AC 263,222 was increased from 35 to 70 g ai ha–1only when applied without an adjuvant. Late in the season, there was no difference in sicklepod control between V2 and V6 applications. Adjuvants and application timing within herbicide treatments had no effect on pitted morningglory control, and, though adjuvants increased common cocklebur control, all treatments controlled more than 85% of both species. AC 263,222 with adjuvants at all rates and timings injured and stunted soybean more 2 wk after treatment compared to AC 263,222 alone. AC 263,222 at 35 or 70 g ha–1with crop oil concentrate reduced yields more than AC 263,222, with either a surfactant or no adjuvant when applied to V2 soybeans.


2006 ◽  
Vol 20 (3) ◽  
pp. 622-626 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman ◽  
John C. Frihauf

Field experiments were conducted during 2003 and 2004 to compare the effectiveness of KIH-485 and S-metolachlor for PRE weed control in no-tillage and conventional-tillage corn. Longspine sandbur control increased as KIH-485 or S-metolachlor rates increased in conventional-tillage corn, but control did not exceed 75% when averaged over experiments. Both herbicides controlled at least 87% of green foxtail with the exception of no-tillage corn in 2004, when KIH-485 was more effective than S-metolachlor at lower rates. Palmer amaranth control ranged from 85 to 100% in 2003 and 80 to 100% in 2004, with the exception of only 57 to 76% control at the lowest two S-metolachlor rates in 2004. Puncturevine control exceeded 94% with all treatments in 2003. In 2004, KIH-485 controlled 86 to 96% of the puncturevine, whereas S-metolachlor controlled only 70 to 81%. Mixtures of atrazine with KIH-485 or S-metolachlor generally provided the most effective control of broadleaf weeds studied.


1997 ◽  
Vol 11 (3) ◽  
pp. 515-519 ◽  
Author(s):  
Julio A. Scursoni ◽  
Emilio H. Satorre

The objective of this paper was to evaluate the effect of preplant applications of trifluralin on barley stand and yield, and control of grass weeds in field experiments during 1992 and 1993. Factors examined were: (1) crop planting patterns (conventional drill with rows 15 cm apart and deep-seeder drill with rows 25 cm apart), (2) herbicide application times (22 d before sowing and immediately before sowing), and (3) herbicide application. During 1993, hand-weeded plots also were established. Trifluralin applied preplant at 528 g ai/ha reduced weed density and biomass. Weed control was higher under conventional planting than under the deep planting pattern, and there was no effect of the time of application on herbicide efficacy. There was no herbicide injury to the crop, and grain yield was higher in treated than in untreated plots due to successful weed control.


Weed Science ◽  
1972 ◽  
Vol 20 (5) ◽  
pp. 468-471 ◽  
Author(s):  
Y. Eshel ◽  
J. Katan

The effect of timing of preemergence application ofN,N-dimethyl-2,2-diphenylacetamide (diphenamid) on phytotoxicity to pepper(Capsicum annuumL.), efficacy of weed control, and damping-off incidence was studied in greenhouse and field experiments. Delay of application from day of sowing to close to emergence reduced phytotoxicity to pepper while only partially reducing herbicidal action. Addition of a mixture of the contact nonresidual herbicides 6,7-dihydrodipyrido[1,2-a:2′,1′-c]pyrazinediium ion (diquat) and 1,1′-dimethyl-4-4′-bipyridinium ion (paraquat) to a late preemergence application of diphenamid resulted in control of weed seedlings which emerged after sowing of pepper and significantly increased the yield. The increase ofRhizoctoniadamping-off incidence due to diphenamid was also reduced by delayed application.


2014 ◽  
Vol 28 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Rand M. Merchant ◽  
A. Stanley Culpepper ◽  
Peter M. Eure ◽  
John S. Richburg ◽  
L. Bo Braxton

Field experiments were conducted in Macon County, Georgia, during 2010 and 2011 to determine the impact of new herbicide-resistant cotton and respective herbicide systems on the control of glyphosate-resistant Palmer amaranth. Sequential POST applications of 2,4-D or glufosinate followed by diuron plus MSMA directed at layby (late POST-directed) controlled Palmer amaranth 62 to 79% and 46 to 49% at harvest when the initial application was made to 8- or 18–cm-tall Palmer amaranth, in separate trials, respectively. Mixtures of glufosinate plus 2,4-D applied sequentially followed by the layby controlled Palmer amaranth 95 to 97% regardless of Palmer amaranth height. Mixing glyphosate with 2,4-D improved control beyond that observed with 2,4-D alone, but control was still only 79 to 86% at harvest depending on 2,4-D rate. Sequential applications of glyphosate plus 2,4-D controlled Palmer amaranth 95 to 96% following the use of either pendimethalin or fomesafen. Seed cotton yield was at least 30% higher with 2,4-D plus glufosinate systems compared to systems with either herbicide alone. The addition of pendimethalin and/or fomesafen PRE did not improve Palmer amaranth control or yields when glufosinate plus 2,4-D were applied sequentially followed by the layby. The addition of these residual herbicides improved at harvest control (87 to 96%) when followed by sequential applications of 2,4-D or 2,4-D plus glyphosate; yields from these systems were similar to those with glufosinate plus 2,4-D. Comparison of 2,4-D and 2,4-DB treatments confirmed that 2,4-D is a more effective option for the control of Palmer amaranth. Results from these experiments suggest cotton with resistance to glufosinate, glyphosate, and 2,4-D will improve Palmer amaranth management. At-plant residual herbicides should be recommended for consistent performance of all 2,4-D systems across environments, although cotton with resistance to glyphosate, glufosinate, and 2,4-D will allow greater flexibility in selecting PRE herbicide(s), which should reduce input costs, carryover concerns, and crop injury when compared to current systems.


2016 ◽  
Vol 30 (1) ◽  
pp. 116-122 ◽  
Author(s):  
Pratap Devkota ◽  
Fred Whitford ◽  
William G. Johnson

Water is the primary carrier for herbicide application, and carrier-water–related factors can influence herbicide performance. In a greenhouse study, premixed formulation of glyphosate plus dicamba was mixed in deionized (DI) water at 5, 18, 31, 44, or 57 C and applied immediately. In a companion study, glyphosate and dicamba formulation was mixed in DI water at temperatures of 5, 22, 39, or 56 C and sprayed after the herbicide solution was left at the respective temperatures for 0, 6, or 24 h. In both studies, glyphosate plus dicamba was applied at 0.275 plus 0.137 kg ae ha−1(low rate), and 0.55 plus 0.275 kg ha−1(high rate), respectively, to giant ragweed, horseweed, Palmer amaranth, and pitted morningglory. Glyphosate plus dicamba applied at a low rate with solution temperature of 31 C provided 14% and 26% greater control of giant ragweed and pitted morningglory, respectively, compared to application at solution temperature of 5 C. At both rates of glyphosate and dicamba formulation, giant ragweed and pitted morningglory control was 15% or greater at solution temperature of 44 C compared to 5 C. Weed control was not affected with premixture of glyphosate and dicamba applied ≤ 24 h after mixing herbicide. When considering solution temperature, glyphosate and dicamba applied at low rate provided 13 and 6% greater control of Palmer amaranth and pitted morningglory, respectively, with solution temperature of 22 C compared to 5 C. Similarly, giant ragweed control was 8% greater with solution temperature of 39 C compared to 5 C. Glyphosate and dicamba applied at high rate provided 8% greater control of giant ragweed at solution temperature of 22 or 39 C compared to 5 C. Therefore, activity of premixed glyphosate and dicamba could be reduced with spray solution at lower temperature; however, the result is dependent on weed species.


1992 ◽  
Vol 6 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Stacey A. Bruff ◽  
David R. Shaw

Field experiments were conducted in 1989 and 1990 on silty clay and sandy loam soils to evaluate weed control and soybean yield with early-April preplant incorporation of selective herbicides in stale seedbed soybean followed by non-selective weed control measures at planting. Metribuzin applied PPI early followed by chlorimuron POST coupled with either glyphosate or paraquat PRE controlled sicklepod, pitted morningglory, and hemp sesbania to the same extent of that treatment applied PPI at planting. All stale seedbed treatments with POST applications and glyphosate, paraquat, or tillage at planting controlled pitted morningglory over 70%. However, imazaquin or metribuzin applied PPI early without a POST treatment controlled sicklepod and pitted morningglory poorly. Frequently, applying PPI herbicides at planting increased control compared with early PPI applications, but this was overcome by POST treatments. Early stale seedbed applications of metribuzin did not result in more than 60% control of hemp sesbania, whereas metribuzin applied PPI at planting controlled over 85%. However, metribuzin plus chlorimuron controlled hemp sesbania at least 74%, regardless of application timing or tillage method, whereas no imazaquin treatment achieved over 65% control. All stale seedbed herbicide treatments increased soybean yield compared with the untreated stale seedbed check. Selective herbicide treatments with either non-selective herbicide in a stale seedbed program resulted in equivalent yield to PPI at planting treatments most often, except with metribuzin.


2021 ◽  
pp. 1-32
Author(s):  
Grant L Priess ◽  
Jason K Norsworthy ◽  
Rodger B Farr ◽  
Andy Mauromoustakos ◽  
Thomas R Butts ◽  
...  

Abstract In current and next-generation weed control technologies, sequential applications of contact and systemic herbicides for POST control of troublesome weeds are needed to mitigate the evolution of herbicide resistance. A clear understanding of the impact auxin herbicide symptomology has on Palmer amaranth groundcover will aid optimization of sequential herbicide applications. Field and greenhouse experiments were conducted in Fayetteville, AR and a laboratory experiment was conducted in Lonoke, AR, in 2020 to evaluate changes in Palmer amaranth groundcover following an application of 2,4-D and dicamba with various nozzles, droplet sizes, and velocities. Field experiments utilized three nozzles: Extended Range (XR), Air Induction Extended Range (AIXR), and Turbo TeeJet Induction (TTI), to assess the effect of spray droplet size on changes in Palmer amaranth groundcover. Nozzle did not affect Palmer amaranth groundcover when dicamba was applied. However, nozzle selection did impact groundcover when 2,4-D was applied; the following nozzle order XR>AIXR>TTI reduced Palmer amaranth groundcover the greatest in both site-years of the field experiment. This result (XR>AIXR> TTI) matches percent spray coverage data for 2,4-D and is inversely related to spray droplet size data. Rapid reductions of Palmer amaranth groundcover from 100% at time zero to 39.4 to 64.1% and 60.0 to 85.8% were observed 180 minutes after application in greenhouse and field experiments, respectively, regardless of herbicide or nozzle. In one site-year of the greenhouse and field experiments, regrowth of Palmer amaranth occurred 10080 minutes (14 days) after an application of either 2,4-D or dicamba to larger than labeled weeds. In all experiments, complete reduction of live Palmer amaranth tissue was not observed 21 days after application with any herbicide or nozzle combination. Control of Palmer amaranth escapes with reduced groundcover may potentially lead to increased selection pressure on sequentially applied herbicides due to a reduction in spray solution contact with the targeted pest.


2015 ◽  
Vol 29 (3) ◽  
pp. 350-358 ◽  
Author(s):  
Daniel O. Stephenson ◽  
Jason A. Bond ◽  
Randall L. Landry ◽  
H. Matthew Edwards

Four field experiments were conducted in Louisiana and Mississippi in 2009 and 2010 to evaluate POST herbicides treatments with tembotrione applied alone or as a prepackaged mixture with thiencarbazone for weed control in corn. Treatments included tembotrione at 92 g ai ha−1, thiencarbazone : tembotrione at 15 : 76 g ai ha−1, atrazine at 2,240 g ai ha−1, glufosinate at 450 g ai ha−1, glyphosate at 860 g ae ha−1, and coapplications of tembotrione or thiencarbazone : tembotrione with atrazine, glufosinate, or glyphosate. All treatments were applied to 26-cm corn in the V4 growth stage. Treatments containing thiencarbazone : tembotrione and those with tembotrione controlled barnyardgrass, browntop millet, entireleaf morningglory, hophornbeam copperleaf, johnsongrass, Palmer amaranth, and velvetleaf 85 to 96% and 43 to 97% 28 d after treatment and at corn harvest, respectively. Corn yield ranged from 9,200 to 10,420 kg ha−1and was greater than the nontreated control following all herbicide treatments, except atrazine alone. Results indicated that thiencarbazone : tembotrione or tembotrione POST is an option for weed management in corn, and applications of thiencarbazone : tembotrione would be strongly encouraged where rhizomatous johnsongrass is problematic.


Sign in / Sign up

Export Citation Format

Share Document