Russian thistle (Salsola tragus L.) control with soil-active herbicides in no-till fallow

2021 ◽  
pp. 1-7
Author(s):  
Drew J. Lyon ◽  
Judit Barroso ◽  
Mark E. Thorne ◽  
Jennifer Gourlie ◽  
Larry K. Lutcher

Abstract The benefits of no-till fallow, which include reduced soil erosion, improved soil health, and increased stored soil water, are in jeopardy because of the widespread development of glyphosate resistance in Russian thistle. The objective of this research was to evaluate the efficacy of soil-active, residual herbicides for Russian thistle control in no-till fallow. The combinations of sulfentrazone + carfentrazone and flumioxazin + pyroxasulfone, and metribuzin alone were each applied in late fall, late winter, and split-applied in late fall and late winter at three sites: Adams, OR, in 2017–2018; Lind, WA, in 2018–2019; and Ralston, WA, in 2019–2020. All treatments provided good to excellent control of the initial flush of Russian thistle when assessed in mid-May, except the late-fall application of metribuzin at all three sites, and the late-fall application of sulfentrazone + carfentrazone at Adams. Cumulative Russian thistle densities, evaluated monthly throughout the fallow season, were lowest for the sulfentrazone + carfentrazone treatments, except for the late-fall application at Adams. However, flumioxazin + pyroxasulfone and metribuzin provided greater control of tumble mustard and prickly lettuce than did sulfentrazone + carfentazone. Sulfentrazone + carfentrazone, flumioxazin + pyroxasulfone, and metribuzin can all be used for Russian thistle control in fallow. To reduce the risk for crop injury to subsequently planted winter wheat, a late-fall application of sulfentrazone + carfentrazone may be the preferred treatment in low-rainfall regions where winter wheat–fallow is commonly practiced. A late-winter application may be preferred in higher rainfall regions where a 3-year rotation (e.g., winter wheat–spring wheat–fallow) is common. Flumioxazin + pyroxasulfone should be considered if other broadleaf weeds, such as tumble mustard or prickly lettuce, are of concern. The use of these soil-applied herbicides will reduce the need for the frequent application of glyphosate for Russian thistle control in no-till fallow.

2017 ◽  
Vol 81 (2) ◽  
pp. 331-340 ◽  
Author(s):  
Carlos M. Romero ◽  
Richard E. Engel ◽  
Chengci Chen ◽  
Roseann Wallander ◽  
Clain A. Jones

2017 ◽  
Vol 81 (2) ◽  
pp. 322-330 ◽  
Author(s):  
Richard Engel ◽  
Clain Jones ◽  
Carlos Romero ◽  
Rosie Wallander
Keyword(s):  
No Till ◽  

2009 ◽  
Vol 64 (1) ◽  
pp. 43-52 ◽  
Author(s):  
J.D. Williams ◽  
H.T. Gollany ◽  
M.C. Siemens ◽  
S.B. Wuest ◽  
D.S. Long

2017 ◽  
Vol 1 (92) ◽  
pp. 100-108
Author(s):  
T.S. Vinnichuk ◽  
L.M. Parminskaya ◽  
N.M. Gavrilyuk

In the article the research the results of studies of the phytosanitary state of winter wheat sowing with three soil treatments - plowing (22-24 cm), shallow (10-12 cm) and zero (no - till) with various doses of fertilizers: N56 Р16 К16 , N110-130 Р90 К110 and N145-165 Р135 К150 , without fertilizers (control) for the two predecessors - soybean and rapeseed. The influence of these methods on the development and prevalence of powdery mildew, septoriosis of leaves, root rot of winter wheat, the most common pests in the area of research - cereal flies, wheat thrips and grain sawflies. The identified measures to limit the development and spread of harmful organisms above.


1990 ◽  
Vol 82 (2) ◽  
pp. 255-261 ◽  
Author(s):  
M. E. Zarnstorff ◽  
D. S. Chamblee ◽  
J. P. Mueller ◽  
W. V. Campbell
Keyword(s):  

2021 ◽  
pp. 1-18
Author(s):  
Clay M. Perkins ◽  
Thomas C. Mueller ◽  
Lawrence E. Steckel

Abstract Junglerice is becoming more prevalent in Tennessee, Arkansas and Mississippi row crop fields. The evolution of glyphosate-resistant junglerice populations is one reason for the increase. Another possible explanation is that glyphosate and clethodim grass activity is being antagonized by dicamba. This question has led to research to examine if sequential applications alleviate antagonism observed with dicamba plus glyphosate and/or clethodim mixtures and determine if 24 h, 72 h or 168 h sequential treatments of those herbicides can improve junglerice control. Glyphosate + clethodim applications provided >90% junglerice control. The observed levels of antagonism varied by whether the location of the test was in the greenhouse or the field and the timing of applications. In the greenhouse, clethodim + dicamba provided excellent control while in the field the same treatment showed over a 30% reduction in junglerice control compared with clethodim alone. However, control was restored by using a mixture of glyphosate + clethodim without dicamba. The environment at the time of application and relative glyphosate-resistance (GR) level of the junglerice influenced the overall control of these sequential applications. Clethodim applied first followed by dicamba at 72 or 168 h, better control was observed compared with applying dicamba followed by clethodim. Overall, mixing glyphosate + clethodim provided the most complete junglerice control regardless of timing. These data confirm that leaving dicamba out of the spray tank will mitigate herbicide antagonism on junglerice control. These data would also indicate that avoiding dicamba and glyphosate mixtures will also improve the consistency of control with glyphosate-susceptible junglerice.


Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 186 ◽  
Author(s):  
Beata Feledyn-Szewczyk ◽  
Janusz Smagacz ◽  
Cezary A. Kwiatkowski ◽  
Elżbieta Harasim ◽  
Andrzej Woźniak

In recent years, there has been an increasing interest around agricultural science and practice in conservation tillage systems that are compatible with sustainable agriculture. The aim of this study was to assess the qualitative and quantitative changes in weed flora and soil seed bank under reduced tillage and no-till (direct sowing) in comparison with traditional ploughing. In the crop rotation: pea/rape—winter wheat—winter wheat the number and dry weight of weeds increased with the simplification of tillage. The seed bank was the largest under direct sowing and about three times smaller in traditional ploughing. Under direct sowing, most weed seeds were accumulated in the top soil layer 0–5 cm, while in the ploughing system most weed seeds occurred in deeper layers: 5–10 and 10–20 cm. In the reduced and no-till systems, a greater percentage of perennial and invasive species, such as Conyza canadensis L., was observed. The results show that it is possible to maintain weed infestation in the no-till system at a level that does not significantly affect winter wheat yield and does not pose a threat of perennial and invasive weeds when effective herbicide protection is applied.


2007 ◽  
Vol 99 (2) ◽  
pp. 549-555 ◽  
Author(s):  
Anatoliy G. Kravchenko ◽  
Kurt D. Thelen

1990 ◽  
Vol 68 (7) ◽  
pp. 1597-1601 ◽  
Author(s):  
John S. Taylor ◽  
Munjeet K. Bhalla ◽  
J. Mason Robertson ◽  
Lu J. Piening

During overwintering in a northern climate, winter wheat goes through a hardening process, followed by dehardening in late winter – early spring. This sequence of events may be partially controlled by changes in endogenous hormone levels. Crowns and leaf tissue from field grown winter wheat (Triticum aestivum L. cv. Norstar) seeded at the beginning of September were collected and freeze-dried at monthly intervals during the winters of 1985–1986 and 1986–1987. Material was also sampled and freeze-dried from seedlings grown in a growth chamber under hardening conditions (21 °C for 2 weeks plus 3 °C for 6 weeks) or nonhardening conditions (3 weeks at 21 °C). The tissues were analysed for cytokinins and abscisic acid. Cytokinin levels, measured with the soybean hypocotyl section assay, declined from October onwards and then rose to a peak in late winter (January and February, winter 1986–1987; February and March, winter 1985–1986), subsequently declining again. Abscisic acid, quantitated as the methyl ester by gas chromatography with an electron capture detector, increased in level from October to December, then decreased to a relatively low level between January and March. Hardened seedlings from the growth chamber contained significantly higher abscisic acid levels and significantly lower cytokinin levels than did the nonhardened seedlings. Key words: abscisic acid, cytokinins, hardening, Triticum aestivum, winter wheat.


Sign in / Sign up

Export Citation Format

Share Document