Seed Germination and Seedling Emergence of Blackgrass (Alopecurus myosuroides) as Affected by Non–Target-Site Herbicide Resistance

Weed Science ◽  
2017 ◽  
Vol 65 (6) ◽  
pp. 732-742 ◽  
Author(s):  
Eshagh Keshtkar ◽  
Solvejg K. Mathiassen ◽  
Roland Beffa ◽  
Per Kudsk

Seedling emergence traits of susceptible (S) and resistant (R) blackgrass subpopulations isolated from a single non–target-site resistant (NTSR) population were studied in controlled conditions. The seedling emergence of the R subpopulation was lower and slower than that of the S subpopulation, especially at low temperature and deep burial. The burial depth inhibiting final emergence by 50% for the R subpopulation was significantly lower than that of the S subpopulation at low temperature. The present study revealed that under suboptimal conditions the NTSR loci conferring herbicide resistance were correlated with a fitness cost in relation to seedling emergence traits. The results suggest that deep soil cultivation and delayed sowing of autumn-sown crops can hamper germination of the R more than of the S subpopulation and thus potentially reduce the prevalence of the R subpopulation in the blackgrass population.

2021 ◽  
Author(s):  
yuanyuan Tao ◽  
Tian-cui Sang ◽  
Jun-jie Yan ◽  
Yun-xia Hu ◽  
Yu Zhao ◽  
...  

Abstract different sand burial depths on seed germination, seedling emergence, growth and biomass allocation were studied to provide a scientific basis for further control of X. spinosum. Six sand burial depths (1, 2, 3, 5, 7 and 9 cm) were established to explore the response of X. spinosum seed germination and seedling growth to sand burial. The first emergence time, peak emergence time, emergence rate, seedling growth height, biomass and biomass distribution of X. spinosum seeds had significant effects at different sand burial depths (P < 0.05). The X. spinosum seeds had the highest emergence rate (71.5%) at 1 cm sand burial and the maximum seedling height (7.1 cm). As sand burial depth increased, the emergence rate and seedling height gradually decreased, and the emergence rate (12.25%) and seedling height (2.9 cm) were lowest at 9 cm sand burial. The root length at 9 cm depth (13.6 cm) was significantly higher than that at other sand depths (P < 0.05). The sand burial depth affected the biomass accumulation and distribution of X. spinosum. As sand burial depth increased, the root biomass and rhizome ratio increased, and the most deeply buried seedlings allocated more biomass for root growth. The optimal sand burial depth for seed germination and seedling growth of X. spinosum was 1–3 cm, and high burial depth (5–9 cm) was not conducive to the germination and growth of X. spinosum seedlings. For prevention and control of X. spinosum, we suggest deeply ploughing crops before sowing to ensure X. spinosum seeds are ploughed into a deep soil layer.


Weed Science ◽  
2021 ◽  
pp. 1-30
Author(s):  
Michael Thompson ◽  
Gulshan Mahajan ◽  
Bhagirath S. Chauhan

Abstract Herbicide resistance is an increasing issue in many weed species, including rigid ryegrass (Lolium rigidum Gaudin); a major weed of winter cropping systems in southern Australia. Recently, this weed has also been found in summer crops in the south eastern region of Australia. Effective control of this herbicide resistant weed across south eastern Australia requires alternative management strategies. These strategies can be informed from analyses on the interaction of germinable seeds with their regional environment and by identifying the differences between populations of varying herbicide resistance levels. In this study, we explore how various environmental factors differentially affect the seed germination and seedling emergence of three L. rigidum populations, including one glyphosate-resistant population (GR), one glyphosate-susceptible population (GS) and one population of unknown resistance status (CC04). Germination was greater than 90% for all populations at each temperature regime except 15/5 C. Populations germinated at a lower rate under 15/5 C, ranging from 74 to 87%. Salt stress had a similar effect on the germination of all populations, with 0% germination occurring at 250 mM salt stress. Population GS had greater tolerance to osmotic stress with 65% germination at −0.4 MPa compared to 47% and 43% germination for CC04 and GR, respectively; however, germination was inhibited at −0.8 and −1.6 MPa for all populations. All populations had lower germination when placed in complete darkness as opposed to alternating light/dark. Germination in darkness was lower for CC04 (69%) than GR (83%) and GS (83%). Seedling emergence declined with increasing burial depth but retained 37% emergence at 8 cm when averaged over the populations. These results indicate that L. rigidum Gaud. can survive under a range of environmental variables and the extent of survival differs based on population, however, there was no difference based on herbicide resistance status.


Weed Science ◽  
2020 ◽  
pp. 1-29
Author(s):  
Yonghuan Yue ◽  
Guili Jin ◽  
Weihua Lu ◽  
Ke Gong ◽  
Wanqiang Han ◽  
...  

Abstract Drunken horse grass [Achnatherum inebrians (Hance) Keng] is a perennial poisonous weed in western China. A comprehensive understanding of the ecological response of A. inebrians germination to environmental factors would facilitate the formulation of better management strategies for this weed. Experiments were conducted under laboratory conditions to assess the effects of various abiotic factors, including temperature, light, water, pH and burial depth, on the seed germination and seedling emergence of A. inebrians. The seeds germinated at constant temperatures of 15, 20, 25, 30, 35°C and in alternating-temperature regimes of 15/5, 20/10, 25/15, 30/20, 35/25, 40/30°C, and the seed germination percentages under constant and alternating temperatures ranged from 51% to 94% and 15% to 93%, respectively. Maximum germination occurred at a constant temperature of 25°C, and germination was prevented at 45/35°C. Light did not appear to affect seed germination. The germination percentage of seeds was more than 75% in the pH range of 5 to 10, with the highest germination percentage at pH 6. The seeds germinated at osmotic potentials of 0 MPa to -1.0 MPa, but decreasing osmotic potential inhibited germination, with no germination at -1.2MPa. After 21 d of low osmotic stress, the seeds that did not germinate after rehydration had not lost their vitality. The seedling emergence percentage was highest (90%) when seeds were buried at 1 cm but declined with increasing burial depth and no emergence at 9 cm. Deep tillage may be effective in limiting the seed germination and emergence of this species. The results of this study provide useful information on the conditions necessary for A. inebrians germination and provide a theoretical basis for science-based prediction, prevention and control of this species.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Ning Zhao ◽  
Qi Li ◽  
Wenlei Guo ◽  
Lele Zhang ◽  
Lu’an Ge ◽  
...  

Shortawn foxtail is an invasive grass weed infesting winter wheat and canola production in China. A better understanding of the germination ecology of shortawn foxtail would help to develop better control strategies for this weed. Experiments were conducted under laboratory conditions to evaluate the effects of various abiotic factors, including temperature, light, pH, osmotic stress, salt concentration, and planting depth, on seed germination and seedling emergence of shortawn foxtail. The results showed that the seed germination rate was greater than 90% over a wide range of constant (5 to 25C) and alternating (15/5 to 35/25C) temperatures. Maximum germination occurred at 20C or 25/15C, and no germination occurred at 35C. Light did not appear to have any effect on seed germination. Shortawn foxtail germination was 27% to 99% over a pH range of 4 to 10, and higher germination was obtained at alkaline pH values ranging from 7 to 10. Seed germination was sensitive to osmotic potential and completely inhibited at an osmotic potential of −0.6 MPa, but it was tolerant to salinity: germination even occurred at 200 mM NaCl (5%). Seedling emergence was highest (98%) when seeds were placed on the soil surface but declined with the increasing burial depth. No seedlings emerged when seeds were buried 6-cm deep. Deep tillage could be an effective measure to limit seed germination from increased burial depth. The results of this study will lead to a better understanding of the requirements for shortawn foxtail germination and emergence and will provide information that could contribute to its control.


Weed Science ◽  
2011 ◽  
Vol 59 (2) ◽  
pp. 182-187 ◽  
Author(s):  
Grace E-K. Bolfrey-Arku ◽  
Bhagirath S. Chauhan ◽  
David E. Johnson

Itchgrass is a weed of many crops throughout the tropics and one of the most important grass weeds of rainfed rice. Experiments were conducted in the laboratory and screenhouse to determine the effects of light, alternating day/night temperatures, high temperature pretreatment, water stress, seed burial depth, and rice residue on seed germination and seedling emergence of itchgrass in the Philippines. Two populations were evaluated and the results were consistent for both populations. Germination in the light/dark regime was greater at alternating day/night temperatures of 25/15 C than at 35/25, 30/20, or 20/10 C. Light was not a requirement for germination, but a light/dark regime increased germination by 96%, across temperature and population. A 5-min high temperature pretreatment for 50% inhibition of maximum itchgrass germination ranged from 145 to 151 C with no germination when seeds were exposed to ≥ 180 C. The osmotic potential required for 50% inhibition of maximum germination was −0.6 MPa for itchgrass, although some seeds germinated at −0.8 MPa. Seedling emergence was greatest for seeds placed on the soil surface, and emergence declined with increasing soil burial depth; no seedlings emerged from seeds buried at 10 cm. The addition of rice residue to soil surface in pots at rates equivalent to 4 to 6 Mg ha−1reduced itchgrass seedling emergence. Since seedling emergence was greatest at shallow depths and germination was stimulated by light, itchgrass may become a problem in systems where soil is cultivated at shallow depths. Knowledge gained in this study could contribute to developing components of integrated weed management strategies for itchgrass.


Weed Science ◽  
2021 ◽  
pp. 1-27
Author(s):  
Aseemjot Singh ◽  
Gulshan Mahajan ◽  
Bhagirath Singh Chauhan

Abstract Wild mustard (Sinapis arvensis L.) is a widespread weed of the southeastern cropping region of Australia. Seed germination ecology of S. arvensis populations selected from different climatic regions may differ due to adaptative traits. Experiments were conducted to evaluate the effects of temperature, light, radiant heat, soil moisture, salt concentration, and burial depth on seed germination and seedling emergence of two [Queensland (Qld) population: tropical region; and Victoria (Vic) population: temperate region] populations of S. arvensis. Both populations germinated over a wide range of day/night (12 h/12 h) temperatures (15/5 to 35/25 C), and had the highest germination at 30/20 C. Under complete darkness, the Qld population (61%) had higher germination than the Vic population (21%); however, under the light/dark regime, both populations had similar germination (78 to 86%). At 100 C pretreatment for 5 min, the Qld population (44%) had higher germination than the Vic population (13%). Germination of both populations was nil when given pretreatment at 150 and 200 C. The Vic population was found tolerant to high osmotic and salt stress compared with the Qld population. At an osmotic potential of −0.4 MPa, germination of Qld and Vic populations was reduced by 85% and 42%, respectively, compared with their respective control. At 40, 80, and 160 mM sodium chloride, germination of the Qld population was lower than the Vic population. Averaged over the populations, seedling emergence was highest (52%) from a burial depth of 1 cm and was nil from 8 cm depth. Differential germination behaviors of both populations to temperature, light, radiant heat, water stress, and salt stress suggests that populations of S. arvensis may have undergone differential adaptation. Knowledge gained from this study will assist in developing suitable control measures for this weed species to reduce the soil seedbank.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
RC. XIONG ◽  
Y. MA ◽  
HW. WU ◽  
WL. JIANG ◽  
XY. MA

ABSTRACT: Velvetleaf, an annual broadleaf weed, is a common and troublesome weed of cropping systems worldwide. Laboratory and field experiments were conducted to determine the effects of environmental factors on germination and emergence of velvetleaf. Seeds germinated over a range of constant temperatures from 10 to 40 oC regardless of light conditions, but no germination occurred at temperature below 5 oC and beyond 50 oC. Seeds germinated at alternating temperature regimes of 15/5 to 40/30 oC, with maximum germination (>90%) at alternating temperatures of 40/30 oC. Germination was sensitive to water stress, and only 0.4% of the seeds germinated at the osmotic potential of -0.4 MPa. There was no germination at ? 0.6 MPa. Moreover, germination was reduced by saline and alkaline stresses and no germination occurred at ³ 150 mM NaCl or ³ 200 mM NaHCO3 concentrations. However, pH values from 5 to 9 had no effect on seed germination. Seedling emergence was significantly affected by burial depth and maximum emergence (78.1-85.6%) occurred at the 1-4 cm depth. The results of this study have contributed to our understanding of the germination and emergence of velvetleaf and should enhance our ability to improve control strategies in cropping systems in central China.


Sign in / Sign up

Export Citation Format

Share Document