Characterization of multiple herbicide–resistant waterhemp (Amaranthus tuberculatus) populations from Illinois to VLCFA-inhibiting herbicides

Weed Science ◽  
2019 ◽  
Vol 67 (4) ◽  
pp. 369-379 ◽  
Author(s):  
Seth A. Strom ◽  
Lisa C. Gonzini ◽  
Charlie Mitsdarfer ◽  
Adam S. Davis ◽  
Dean E. Riechers ◽  
...  

AbstractField experiments were conducted in 2016 and 2017 in Champaign County, IL, to study a waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] population (CHR) resistant to 2,4-D and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-, photosystem II–, acetolactate synthase (ALS)-, and protoporphyrinogen oxidase–inhibiting herbicides. Two field experiments were designed to investigate the efficacy of very-long-chain fatty-acid (VLCFA)-inhibiting herbicides, including a comparison of active ingredients at labeled use rates and a rate titration experiment. Amaranthus tuberculatus density and control were evaluated at 28 and 42 d after treatment (DAT). Nonencapsulated acetochlor, alachlor, and pyroxasulfone provided the greatest PRE control of CHR (56% to 75%) at 28 DAT, while metolachlor, S-metolachlor, dimethenamid-P, and encapsulated acetochlor provided less than 27% control. In the rate titration study, nonencapsulated acetochlor controlled CHR more than equivalent field use rates of S-metolachlor. Subsequent dose–response experiments with acetochlor, S-metolachlor, dimethenamid-P, and pyroxasulfone in the greenhouse included three multiple herbicide–resistant (MHR) A. tuberculatus populations: CHR-M6 (progeny generated from CHR), MCR-NH40 (progeny generated from Mclean County, IL), and ACR (Adams County, IL), in comparison with a sensitive population (WUS). Both CHR-M6 and MCR-NH40 are MHR to atrazine and HPPD, and ALS inhibitors and demonstrated higher survival rates (LD50) to S-metolachlor, acetochlor, dimethenamid-P, or pyroxasulfone than ACR (atrazine resistant but HPPD-inhibitor sensitive) and WUS. Based on biomass reduction (GR50), resistant to sensitive (R:S) ratios between CHR-M6 and WUS were 7.5, 6.1, 5.5, and 2.9 for S-metolachlor, acetochlor, dimethenamid-P, and pyroxasulfone, respectively. Values were greater for MCR-NH40 than CHR-M6, and ACR was the most sensitive to all VLCFA inhibitors tested. Complete control of all populations was achieved at or below a field use rate of acetochlor. In summary, field studies demonstrated CHR is not controlled by several VLCFA-inhibiting herbicides. Greenhouse dose–response experiments corroborated field results and generated R:S ratios (LD50) ranging from 4.5 to 64 for CHR-M6 and MCR-NH40 among the four VLCFA-inhibiting herbicides evaluated.

2017 ◽  
Vol 31 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Maxwel C. Oliveira ◽  
Amit J. Jhala ◽  
Todd Gaines ◽  
Suat Irmak ◽  
Keenan Amundsen ◽  
...  

Field and greenhouse experiments were conducted in Nebraska to (1) confirm the 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting resistant-waterhemp biotype (HPPD-RW) by quantifying the resistance levels in dose-response studies, and (2) to evaluate efficacy of PRE-only, POST-only, and PRE followed by POST herbicide programs for control of HPPD-RW in corn. Greenhouse dose-response studies confirmed that the suspected waterhemp biotype in Nebraska has evolved resistance to HPPD-inhibiting herbicides with a 2- to 18-fold resistance depending upon the type of HPPD-inhibiting herbicide being sprayed. Under field conditions, at 56 d after treatment, ≥90% control of the HPPD-RW was achieved with PRE-applied mesotrione/atrazine/S-metolachlor+acetochlor, pyroxasulfone (180 and 270 g ai ha−1), pyroxasulfone/fluthiacet-methyl/atrazine, and pyroxasulfone+saflufenacil+atrazine. Among POST-only herbicide programs, glyphosate, a premix of mesotrione/atrazine tank-mixed with diflufenzopyr/dicamba, or metribuzin, or glufosinate provided ≥92% HPPD-RW control. Herbicide combinations of different effective sites of action in mixtures provided ≥86% HPPD-RW control in PRE followed by POST herbicide programs. It is concluded that the suspected waterhemp biotype is resistant to HPPD-inhibiting herbicides and alternative herbicide programs are available for effective control in corn. The occurrence of HPPD-RW in Nebraska is significant because it limits the effectiveness of HPPD-inhibiting herbicides.


2011 ◽  
Vol 25 (3) ◽  
pp. 514-518 ◽  
Author(s):  
Patrick M. McMullan ◽  
Jerry M. Green

Seeds of a putative 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide–resistant tall waterhemp biotype from Henry County, IA, were collected from a seed corn field in fall 2009 after plants were not controlled following a POST application of mesotrione plus atrazine. The response of this biotype to various herbicide modes of action was evaluated in greenhouse and field tests. Under greenhouse conditions, the suspect biotype showed an eightfold decrease in sensitivity to mesotrione with a 50% control rate of 21 g ha−1compared with 2.7 g ha−1for the susceptible biotype. The biotype also had a 10-fold decrease in sensitivity to atrazine and a 28-fold decrease in sensitivity to thifensulfuron. Under field conditions, tall waterhemp was not controlled POST at the label rate of 1,100 g ha−1of atrazine. Tall waterhemp control was less than 60% at the label rates of three commonly used POST HPPD-inhibiting herbicides in seed corn: 105 g ha−1of mesotrione, 92 g ha−1of tembotrione, or 18 g ha−1of topramezone. Thus, this new tall waterhemp biotype is resistant to three herbicide modes of action: HPPD inhibitors, photosystem-II inhibitors, and acetolactate synthase (ALS) inhibitors.


Weed Science ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 384-389 ◽  
Author(s):  
Robert B. Cross ◽  
Lambert B. McCarty ◽  
Nishanth Tharayil ◽  
Ted Whitwell ◽  
William C. Bridges

Annual bluegrass is the most problematic winter annual weed in managed turfgrass. Acetolactate synthase (ALS)-inhibiting herbicides are effective for annual bluegrass control, but reliance on this mode of action can select for herbicide-resistant biotypes. Two annual bluegrass biotypes not controlled with ALS-inhibiting herbicides were reported at golf courses in South Carolina and Georgia. Research was initiated at Clemson University to verify the level of resistance of these biotypes to ALS inhibitors. Two ALS-susceptible (S) and suspected resistant (SCr, GAr) annual bluegrass biotypes were established in a greenhouse. Dose-response experiments were conducted on mature annual bluegrass plants using trifloxysulfuron, foramsulfuron, and bispyribac-sodium, all ALS-inhibiting herbicides. Additionally, a rapid diagnostic ALS activity assay was optimized and conducted using the same herbicides. For dose-response experiments, the rate of herbicide that reduced shoot biomass 50% (I50) values for the S biotypes were 13.6 g ai ha−1for trifloxysulfuron, 7.0 g ai ha−1for foramsulfuron, and 38.3 g ai ha−1for bispyribac-sodium. Fifty percent shoot biomass reduction was not observed in either the SCr or GAr biotypes at eight times the labeled field rate of all ALS-inhibiting herbicides tested. For in vivo tests of ALS activity, the SCr biotype yielded I50(concentration of herbicide that reduced ALS activity 50%) values 3,650, 3,290, and 13 times the S biotypes following treatment with trifloxysulfuron, foramsulfuron, and bispyribac-sodium, respectively. Similarly, I50values for the GAr biotype were 316, 140, and 64 times greater than the S biotypes following the same herbicide treatments. This research indicates high levels of annual bluegrass resistance to multiple ALS-inhibiting herbicides in South Carolina and Georgia. Future research should focus on the mechanisms of ALS resistance in these annual bluegrass biotypes as well as alternative options for control not targeting the ALS enzyme.


1990 ◽  
Vol 4 (1) ◽  
pp. 186-198 ◽  
Author(s):  
Jonathan Gressel ◽  
Lee A. Segel

Herbicide-resistant populations have evolved only in monoculture and/or monoherbicide conditions at predictable rates for each compound and weed. No populations of triazine-resistant weeds have appeared in corn where rotations of crops and herbicides or herbicide mixtures were used. This is due to the greatly reduced competitive fitness of the resistant individuals, which could be expressed only during rotational cycles, and also to the greater sensitivity of resistant individuals to other herbicides, pests, and control practices (“negative cross-resistance”). The model presented here describes how an understanding of all of these factors can provide strategies to decrease the frequency of the resistant individuals during rotation. Rotations or mixtures may not delay the rate of appearance of resistance to inhibitors of acetolactate synthase (ALS), where the fitness of resistant biotypes is claimed to be near normal. The best way to delay resistance to ALS inhibitors is to use those compounds with less persistence so that the selection pressure will be lowered. Too little is known about the frequency of resistance to other herbicides with target-site resistance–to dinitroanilines, to acetyl CoA carboxylase inhibitors, or to those situations where a single enzyme system confers resistance to a broad spectrum of seemingly unrelated herbicides.


2019 ◽  
Vol 99 (3) ◽  
pp. 364-370
Author(s):  
Lauren Benoit ◽  
Nader Soltani ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
Peter H. Sikkema

Waterhemp is a competitive, summer annual, broadleaf weed that poses a considerable threat to Ontario grain farmers. Populations with multiple resistance to Group 2 (ALS-inhibitors), Group 5 (photosystem II inhibitors), and Group 9 (EPSPS inhibitors) herbicides have been confirmed in Ontario. If left uncontrolled, waterhemp competition can result in corn yield losses of up to 74%. The objective of this research was to evaluate preemergence (PRE) and postemergence (POST) herbicides for control of multiple-herbicide resistant (MR) waterhemp. Two field studies at two locations (Cottam and Walpole Island) were conducted in 2016 and 2017. Fifteen PRE and 12 POST herbicides were evaluated for waterhemp control, density, and aboveground biomass and corn yield. At 8 wk after application (WAA), S-metolachlor/mesotrione/atrazine (1393/139/524 g a.i. ha−1) and S-metolachlor/mesotrione/bicyclopyrone/atrazine (1259/140/35/588 g a.i. ha−1) applied PRE were the most efficacious, controlling MR waterhemp 87% and 91%, respectively. At 8 WAA, the most efficacious POST herbicides were mesotrione + atrazine and dicamba/atrazine, controlling MR waterhemp 92% and 87%, respectively. Reduced waterhemp interference with the PRE herbicides evaluated resulted in corn yield that was similar to the weed-free control.


2017 ◽  
Vol 31 (3) ◽  
pp. 470-476 ◽  
Author(s):  
James T. Brosnan ◽  
Jose J. Vargas ◽  
Gregory K. Breeden ◽  
Sarah L. Boggess ◽  
Margaret A. Staton ◽  
...  

Methiozolin is an isoxazoline herbicide being investigated for selective POST annual bluegrass control in managed turfgrass. Research was conducted to evaluate methiozolin efficacy for controlling two annual bluegrass phenotypes with target-site resistance to photosystem II (PSII) or enolpyruvylshikimate-3-phosphate synthase (EPSPS)-inhibiting herbicides (i.e., glyphosate), as well as phenotypes with multiple resistance to microtubule and EPSPS or PSII and acetolactate synthase (ALS)-inhibiting herbicides. All resistant phenotypes were established in glasshouse culture along with a known herbicide-susceptible control and treated with methiozolin at 0, 125, 250, 500, 1000, 2000, 4000, or 8000 g ai ha−1. Methiozolin effectively controlled annual bluegrass with target-site resistance to inhibitors of EPSPS, PSII, as well as multiple resistance to EPSPS and microtubule inhibitors. Methiozolin rates required to reduce aboveground biomass of these resistant phenotypes 50% (GR50 values) were not significantly different from the susceptible control, ranging from 159 to 421 g ha−1. A phenotype with target-site resistance to PSII and ALS inhibitors was less sensitive to methiozolin (GR50=862 g ha−1) than a susceptible phenotype (GR50=423 g ha−1). Our findings indicate that methiozolin is an effective option for controlling select annual bluegrass phenotypes with target-site resistance to several herbicides.


2015 ◽  
Vol 29 (1) ◽  
pp. 24-34 ◽  
Author(s):  
Vipan Kumar ◽  
Prashant Jha

Field experiments were conducted in 2011 through 2013 at the MSU Southern Agricultural Research Center near Huntley, MT, to evaluate the effectiveness of various PRE and POST herbicide programs for kochia control in the absence of a crop. PRE herbicides labeled for corn, grain sorghum, soybean, wheat/barley, and/or in chemical fallow were applied at recommended field-use rates. Acetochlor + atrazine,S-metolachlor + atrazine + mesotrione, and sulfentrazone applied PRE provided ≥91% control of kochia at 12 wk after treatment (WAT). Metribuzin, metribuzin + linuron, and pyroxasulfone + atrazine PRE provided 82% control at 12 WAT. PRE control with acetochlor + flumetsulam + clopyralid, pyroxasulfone alone, and saflufenacil + 2,4-D was ≤23% at 12 WAT. Paraquat + atrazine, paraquat + linuron, and paraquat + metribuzin controlled kochia ≥98% at 5 WAT. POST control with bromoxynil + fluroxypyr, paraquat, tembotrione + atrazine, and topramezone + atrazine treatments averaged 84% at 5 WAT, and did not differ from glyphosate. Control with POST-applied bromoxynil + pyrasulfotole, dicamba, diflufenzopyr + dicamba + 2,4-D, saflufenacil, saflufenacil + 2,4-D, saflufenacil + linuron was 67 to 78% at 5 WAT. Because of the presence of kochia resistant to acetolactate synthase-inhibiting herbicides at the test site, cloransulam-methyl was not a viable option for kochia control. In a separate greenhouse study, kochia accessions showed differential response to the POST herbicides (labeled for corn or soybean) tested. Tembotrione + atrazine, topramezone + atrazine, lactofen, or fomesafen effectively controlled the glyphosate-resistant kochia accession tested. Growers should utilize these effective PRE- or POST-applied herbicide premixes or tank mixtures (multiple modes of action) to control herbicide-resistant kochia accessions in the field. PRE herbicides with 8 wk of soil-residual activity on kochia would be acceptable if crop competition were present; however, a follow-up herbicide application may be needed to obtain season-long kochia control in the absence of crop competition.


2006 ◽  
Vol 20 (3) ◽  
pp. 551-557 ◽  
Author(s):  
Timothy L. Grey ◽  
Paul L. Raymer ◽  
David C. Bridges

Field studies were conducted to evaluate weed control in herbicide-resistant canola in Georgia. The resistant canola cultivars and respective herbicides were ‘Pioneer 45A76’ and imazamox, ‘Hyola 357RR’ and glyphosate, and ‘2573 Invigor’ and glufosinate. Weed seed of Italian ryegrass and wild radish were sown simultaneously in October with canola and control of these species was evaluated along with other naturally occurring weeds. Herbicide treatments for the respective herbicide-resistant canola cultivar were imazamox at 0.035 and 0.071 kg ai/ha, glyphosate at 0.84 and 1.64 kg ae/ha, and glufosinate at 0.5 and 1.0 kg ai/ha. Herbicides were applied at one– two-leaf (LF) and three–four-LF canola stages. There was no significant injury to any canola cultivar as a result of herbicide rate or timing of application. By midseason (February), imazamox effectively controlled wild radish, henbit, and shepherd's-purse at both rates and at both timings. When applied to three–four-LF canola, the higher rates of glyphosate and glufosinate were required to provide 75% or greater control of Italian ryegrass, wild garlic, and henbit. Glufosinate did not adequately control wild radish at either rate or application timing. Greenhouse experiments provided similar results.


1995 ◽  
Vol 9 (4) ◽  
pp. 696-702 ◽  
Author(s):  
Chae Soon Kwon ◽  
James J. Kells ◽  
Donald Penner

Greenhouse studies were conducted to determine the response of six corn hybrids and two soybean varieties to acetolactate synthase (ALS) inhibitor herbicides applied with terbufos and/or piperonyl butoxide (PBO), a mixed function oxidase (MFO) inhibitor. Field experiments also were conducted to determine the response of six corn hybrids to the combination treatments, terbufos plus ALS inhibitor herbicides and/or PBO and/or antidote. PBO at 0.33 kg/ha tank-mixed with nicosulfuron and primisulfuron injured the Northrup King 9283 corn hybrid. Great Lakes 584 corn was less sensitive than Northrup King 9283 to these combination treatments. Pioneer 3377 IR corn hybrid was resistant to the combination of nicosulfuron or primisulfuron plus PBO at 2 kg/ha and also to the combination treatments of imazethapyr herbicide plus PBO even though terbufos was previously applied. ICI 8532 IT, ICI 8532, and Pioneer 3377 hybrids were injured by the combination of nicosulfuron or primisulfuron and/or terbufos and/or PBO at 2 kg/ha. ICI 8532 IT corn hybrid was not injured by the combination treatment of imazethapyr or thifensulfuron and terbufos. In the field studies, Pioneer 3377 IR and Ciba 4393 RSC hybrids were resistant to sulfonylurea and imidazolinone herbicides even when applied with PBO regardless of the presence of terbufos. All treatments of chlorimuron plus terbufos caused considerable injury to ICI 8532 IT, ICI 8532, Pioneer 3377, and Ciba 4393, but not Pioneer 3377 IR and Ciba 4393 RSC. The combination of thifensulfuron with PBO injured Elgin ‘87 soybean, but the W20 soybean was tolerant to this combination treatment. Combination of imazethapyr with PBO did not affect the growth of Elgin ‘87 soybean.


2009 ◽  
Vol 23 (1) ◽  
pp. 28-33 ◽  
Author(s):  
M. Joy M. Abit ◽  
Kassim Al-Khatib ◽  
David L. Regehr ◽  
Mitchell R. Tuinstra ◽  
Mark M. Claassen ◽  
...  

The selection of herbicide-resistant weeds in grain sorghum production has prompted researchers to explore alternative herbicides to prevent, delay, and manage herbicide-resistant weed biotypes. Greenhouse and field experiments were conducted to evaluate the differential response of sorghum hybrids to POST application of mesotrione. In a greenhouse experiment, 85 sorghum hybrids were treated with 0, 52, 105, 210, and 315 g ai/ha mesotrione when plants were at the three- to four-leaf collar stage. Sorghum response ranged from susceptible to tolerant sorghum hybrids. ‘Pioneer 84G62’, ‘Pioneer 85G01’, and ‘Triumph TR 438’ were the three most susceptible, whereas ‘Dekalb DKS35-70’, ‘Frontier F222E’, and ‘Asgrow Seneca’ were the three most tolerant hybrids. One week after treatment (WAT), the mesotrione rate causing 50% visible injury ranged from 121 to 184 and 64 to 91 g/ha in the most tolerant and susceptible hybrids, respectively. Mesotrione dose–response studies were conducted under field conditions on four sorghum hybrids. One WAT, injury symptoms were greater (up to 23%) in Pioneer 85G01 than in Asgrow Seneca (< 14%). However, all plants appeared normal by the end of the growing season. In addition, sorghum yields were not reduced by mesotrione treatments as verified by correlation coefficient analysis.


Sign in / Sign up

Export Citation Format

Share Document