Predation on weed seeds and seedlings by Pheretima guillelmi and its potential for weed biocontrol

Weed Science ◽  
2020 ◽  
Vol 68 (6) ◽  
pp. 639-645
Author(s):  
Tao Li ◽  
Jiequn Fan ◽  
Zhenguan Qian ◽  
Guohui Yuan ◽  
Dandan Meng ◽  
...  

AbstractThe soil weed seedbank is the source of future weed infestations. Seed predation can result in a large number of seed losses, thus contributing to weed biocontrol. Earthworms are important predators of seeds and seedlings and affect seeds and seedling survival after gut passage. A study was conducted to assess the ability of Pheretima guillelmi (Kinberg) to ingest and digest the seeds and seedlings of 15 main farmland weed species. Pheretima guillelmi ingested the seeds and seedlings of each weed species tested. The percentages of seeds and seedlings ingested were 96.7% to 100% and 21.7% to 94.2%, respectively. Pheretima guillelmi showed greater ingestion of seeds than seedlings for each species and digested the seeds and seedlings of each weed species tested to varying extents. The percentages of seeds and seedlings digested were less than 15% irrespective of the weed species. Passage through the gut of P. guillelmi affected the survival of seeds and seedlings. The germination of large crabgrass [Digitaria sanguinalis (L.) Scop.], green foxtail [Setaria viridis (L.) P. Beauv.], goosegrass [Eleusine indica (L.) Gaertn.], Chinese sprangletop [Leptochloa chinensis (L.) Nees], Malabar sprangletop [Leptochloa fusca (L.) Kunth], redroot pigweed (Amaranthus retroflexus L.), common purslane (Portulaca oleracea L.), barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.], and ricefield flatsedge (Cyperus iria L.) seeds egested by P. guillelmi decreased by 46%, 49%, 47%, 25%, 38%, 26%, 32%, 13%, and 15%, respectively, compared with their respective controls. In contrast to seed ingestion, ingestion of seedlings by P. guillelmi was fatal to individuals of all weed species; no seedlings survived passage through the gut. Our results indicate that predation of weed seeds and seedlings by P. guillelmi probably depletes the soil weed seedbank and that the introduction of P. guillelmi into fields is a potential strategy for weed biocontrol in farmland.

Weed Science ◽  
2020 ◽  
pp. 1-23
Author(s):  
Tao Li ◽  
Jiequn Fan ◽  
Zhenguan Qian ◽  
Guohui Yuan ◽  
Dandan Meng ◽  
...  

Abstract The use of a corn-earthworm coculture (CE) system is an eco-agricultural technology that has been gradually extended due to its high economic output and diverse ecological benefits for urban agriculture in China. However, the effect of CE on weed occurrence has received little attention. A five-year successive experiment (2015 to 2019) was conducted to compare weed occurrence in CE and a corn (Zea mays L.) monoculture (CM). The results show that CE significantly decreased weed diversity, the dominance index, total weed density and biomass, but increased the weed evenness index. The five-year mean number of weed species per plot was 8.4 in CE and 10.7 in CM. Compared to those in CM, the five-year mean density and biomass of total weeds in CE decreased by 59.2% and 66.6%, respectively. The effect of CE on weed occurrence was species specific. The mean density of large crabgrass [Digitaria sanguinalis (L.) Scop.], green foxtail [Setaria viridis (L.) Beauv.], goosegrass [Eleusine indica (L.) Gaertn.], and common purslane (Portulaca oleracea L.) in CE decreased by 94.5, 78.1, 75.0, and 45.8%, whereas the mean biomass decreased by 96.2, 80.8, 76.9, and 41.4%, respectively. Our study suggests that the use of CE could suppress weed occurrence and reduce herbicide inputs in agriculture.


2000 ◽  
Vol 80 (4) ◽  
pp. 963-972 ◽  
Author(s):  
R. C. Van Acker ◽  
A. G. Thomas ◽  
J. Y. Leeson ◽  
S. Z. Knezevic ◽  
B. L. Frick

In 1997, a weed survey was conducted during July and August in fields of wheat, barley, oat, canola and flax in Manitoba. Field selection was based on a stratified-random sampling methodology using ecodistricts as strata. Species in the Poaceae family were most commonly observed in the survey, followed by species in the Polygonaceae, Asteraceae and Brassicaceae families. The six most abundant weed species were green foxtail [Setaria viridis (L.) Beauv.], wild oats (Avena fatua L.), wild buckwheat (Polygonum convolvulus L.), Canada thistle (Cirsium arvense L.), redroot pigweed (Amaranthus retroflexus L.) and wild mustard (Sinapis arvensis L.). The survey highlighted significant differences between ecoregions and between crops in residual weed infestations. The weed community in the Boreal Transition ecoregion was dominated by seven species, whereas fields in the Aspen Parkland and Lake Manitoba Plain ecoregions were dominated by two species and the Interlake Plain ecoregion was dominated by only one species. Although significant differences were found between the weed communities in crops, they were not as great as differences between ecoregions. The Manitoba residual weed community in 1997 was very similar to that reported for 1978–1981 and 1986, suggesting that the same species should remain a focus for weed management. Key words: Weed survey, weed relative abundance, weed distributions, Manitoba ecoregions


Weed Science ◽  
1979 ◽  
Vol 27 (1) ◽  
pp. 7-10 ◽  
Author(s):  
R. B. Taylorson

AbstractGermination of seeds of 10 grass and 33 broadleaved weed species was examined for response to ethylene. Germination was promoted in nine species, inhibited in two, and not affected in the remainder. Of the species promoted, common purslane (Portulaca oleraceaL.), common lambsquarters (Chenopodium albumL.), and several Amaranths, including redroot pigweed (Amaranthus retroflexusL.), were affected most. Transformation of phytochrome to the active form (Pfr) gave interactions that ranged from none to syntergistic with the applied ethylene. In subsequent tests seeds of purslane, redroot pigweed, and giant foxtail (Setaria faberiHerrm.), a species not responsive to ethylene, were examined for germination response to 14 low molecular weight hydrocarbon gases other than ethylene. Some stimulation by the olefins propylene and propadiene was found for purslane and pigweed. Propionaldehyde and butyraldehyde were slightly stimulatory to purslane only.


HortScience ◽  
2007 ◽  
Vol 42 (5) ◽  
pp. 1212-1216 ◽  
Author(s):  
Inga A. Zasada ◽  
Clyde L. Elmore ◽  
Lani E. Yakabe ◽  
James D. MacDonald

The cut flower and bulb industry in California is an important part of the state's agricultural economy and it has relied heavily upon the use of methyl bromide as a treatment to control soil-borne pests. With the phase out of methyl bromide, it is important to develop alternatives that will maintain crop productivity. This report describes research testing the efficacy of propargyl bromide against selected nematode, fungal, and weed species. Three sites were selected in California to represent different soil types and environments. Propargyl bromide was applied to soil in large, buried containers at rates ranging from 28 to 168 kg·ha−1 and compared with standard soil fumigants. The citrus nematode (Tylenchulus semipenetrans Cobb) and an isolate of Fusarium oxysporum Schlechtend:Fr were both controlled at the lowest rate of propargyl bromide tested: 28 kg·ha−1. Weed species varied greatly in their sensitivity to propargyl bromide. A 100% reduction in common purslane (Portulaca oleracea L.) and pigweed (Amaranthus retroflexus L.) germination occurred at 112 kg·ha−1 propargyl bromide, regardless of geographical location. Results for annual bluegrass (Poa annua L.) control were more variable across locations and years, but more than 90% control was consistently achieved with 168 kg·ha−1 propargyl bromide. Cheeseweed (Malva parviflora L.) and field bindweed (Convolvulus arvensis L.) were never consistently controlled by propargyl bromide. When compared with the soil fumigants methyl bromide, iodomethane, and metam sodium, propargyl bromide provided comparable control of all soil-borne pests, but at much lower rates. Although higher rates of propargyl bromide, more than 112 kg·ha−1, were needed to control weeds, these rates still were almost half that required of the other standard fumigants.


Weed Science ◽  
1976 ◽  
Vol 24 (6) ◽  
pp. 612-615 ◽  
Author(s):  
J.F. da Silva ◽  
G.F. Warren

Six species of Solanaceae including tomato (Lycopersicon esculentumMill ‘Campbell 28′) were sprayed in the greenhouse at weekly intervals for 4 weeks starting when tomato plants had one true leaf. All species gained tolerance to metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazine-5(4H)one] with age but tomato and black nightshade (Solarium nigrumL.) were the most tolerant and gained tolerance fastest with age. Jimsonweed (Datura stramoniumL.) and eggplant (Solanum melongenaL. ‘Black Beauty’) were the most susceptible species and the ones that gained least tolerance with age. Potato (Solanum tuberosumL.) from true seeds and pepper (Capsicum annuumL. ‘Yolo wonder’) were intermediate in tolerance. In the field, tomato and nine weed species planted in separate plots and kept free from competition were sprayed at weekly intervals starting when tomato plants had one true leaf. Tomato, large crabgrass (Digitaria sanguinales(L.) Scop.), ivyleaf morningglory (Ipomoea hederaceae(L.) Jacq.) and yellow foxtail (Setaria glauca(L.) Beauv.) were the most resistant species to metribuzin and the ones that gained tolerance fastest with age. The most susceptible weeds were velvetleaf (Abutilon theophrastiMedic), common purslane (Portulaca oleraceaL.), pale smartweed (Polygonum lapathifoliumL.), redroot pigweed (Amaranthus retroflexusL.), common lambsquarters (Chenopodium albumL.), and jimsonweed. Low amounts of sunlight during the 3 days before spraying greatly reduced the resistance of tomato to metribuzin.


Weed Science ◽  
1971 ◽  
Vol 19 (1) ◽  
pp. 42-44 ◽  
Author(s):  
D. Hawton ◽  
E. H. Stobbe

The selectivity of 2,4-dichlorophenylp-nitrophenyl ether (nitrofen) among rape (Brassica campestrisL., var. Echo) and two weed species, redroot pigweed (Amaranthus retroflexusL.) and green foxtail (Setaria viridis(L.) Beauv.), was determined quantitatively by a replicated dosage-response experiment. On an ED50basis, green foxtail and redroot pigweed were, respectively, 5.8 and 63.3 times more susceptible than rape. Selectivity was divided into three parameters; viz., differential spray retention, differential penetration, and differential effects within the plant. Differences in retention were measured with the use of a water-soluble dye, while differences in penetration were determined with14C-labelled nitrofen. Spray retention on green foxtail was 66% of that on the rape and 64% as much nitrofen penetrated redroot pigweed as penetrated rape. Under the conditions of these tests it was estimated that green foxtail and redroot pigweed were, respectively, 9 and 99 times more susceptible to nitrofen than was rape.


Weed Science ◽  
1981 ◽  
Vol 29 (5) ◽  
pp. 577-586 ◽  
Author(s):  
Orvin C. Burnside ◽  
Charles R. Fenster ◽  
Larry L. Evetts ◽  
Robert F. Mumm

An experiment was initiated in 1970 and continued through 1979 by exhuming and germinating seed of 12 economic weed species buried beneath 23 cm of soil in eastern and western Nebraska. Loss in germination of exhumed seeds over years is mathematically characterized by the formula for the rectangular hyperbola, which represents many shapes of curves that have zero as their lower limit. Of the 12 weed species, only fall panicum (Panicum dichotomiflorumMichx.) and redroot pigweed (Amaranthus retroflexusL.) seed germination did not drop significantly over the 10-yr burial period. Germination of redroot pigweed seed was higher when buried in eastern Nebraska, but was higher for smooth groundcherry (Physalis subglabrataMack&Bush.) and velvetleaf (Abutilon theophrastiMedic.) when buried in western Nebraska. Germination of the other nine species were not affected by burial location. The 12 weed species can be ranked as those showing most to least rapid loss of germination during burial for 10 yr as follows: honeyvine milkweed [Ampelamus albidus(Nutt.) Britt.], hemp dogbane (Apocynum cannabinumL.), kochia [Kochia scoparia(L.) Schrad.], sunflower (Helianthus annumL.), large crabgrass [Digitaria sanguinalis(L.) Scop.], common milkweed (Asclepias syriacaL.), musk thistle (Carduus nutansL.), velvetleaf, fall panicum, redroot pigweed, green foxtail [Setaria viridis(L.) Beauv.], and smooth groundcherry.


Weed Science ◽  
1978 ◽  
Vol 26 (3) ◽  
pp. 230-239 ◽  
Author(s):  
G. H. Egley ◽  
J. M. Chandler

In 1972, a 50-yr study of seed longevity was initiated at Stoneville, Mississippi. Weed seeds were collected from 20 locallygrown species and mixed with soil. Replicate samples were placed in polypropylene screen envelopes and buried at soil depths of 8, 23, and 38 cm. Seed germination and viability were determined by germination tests and 2,3,5-triphenyl-tetrazolium chloride (TTC) treatments with recovered seeds. In general, the depth of burial had little effect on seed longevity. Based on the averages of the means at the three depths, the percentages of seeds still viable after burial for 2.5 yr were: spurred anoda [Anoda cristata(L.) Schlecht.] 71%; purple moonflower(Ipomoea turbinataLagasca y Segura) 71%; johnsongrass [Sorghum halepense(L.) Pers.] 62%; velvetleaf(Abutilon theophrastiMedic.) 58%; goosegrass [Eleusine indica(L.) Gaertn.] 33%; hemp sesbania [Sesbania exaltata(Raf.) Cory] 29%; Texas panicum(Panicum taxanumBuckl.) 24%; common cocklebur(Xanthium pensylvanicumWallr.) 18%; common eveningprimrose(Oenothera biennisL.) 14%; large crabgrass [Digitaria sanguinalis(L.) Scop.] 12%; sicklepod(Cassia obtusifoliaL.) 10%; common purslane(Portulaca oleraceaL.) 10%; white morningglory(Ipomoea lacunosaL.) 8%; redroot pigweed(Amaranthus retroflexusL.) 7%; prostrate spurge(Euphorbia supinaRaf.) 6%; prickly sida(Sida spinosaL.) 5%; redvine(Brunnichia cirrhosaGaertn.) 3%; Florida beggarweed [Desmodium tortuosum(Sw.) DC.] 3%; barnyardgrass [Echinochloa crus-galli(L.) Beauv.] 1%; and chickweed [Stellaria media(L.) Cyrillo] 0%.


1990 ◽  
Vol 4 (1) ◽  
pp. 109-114 ◽  
Author(s):  
David W. Johnson ◽  
James M. Krall ◽  
Ronald H. Delaney ◽  
David S. Thiel

A curved-linear Fresnel lens was investigated to test the effect of concentrated solar radiation on surface and buried weed seed. The lens produced a line focus 1 by 150 cm with a mean temperature of 309 C. A 20-s exposure to seed on the soil surface was 100% lethal to green foxtail, kochia, common lambsquarters, common purslane, and wild buckwheat. In a separate study, emergence from kochia and yellow foxtail seed was reduced 100% at 10 mm soil depth after 15 min in soil of 35 and 93 g/kg moisture and 20 to 40% at 178 g/kg moisture content. Concentrated solar radiation from a Fresnel lens has the greatest potential for affecting weed seed on the soil surface. A series of Fresnel lenses and/or larger lenses may be required for many practical field applications.


Weed Science ◽  
2007 ◽  
Vol 55 (6) ◽  
pp. 619-625 ◽  
Author(s):  
Ruth M. Dahlquist ◽  
Timothy S. Prather ◽  
James J. Stapleton

Mortality of weed seeds at temperatures of 39, 42, 46, 50, 60, and 70 C was recorded through time under controlled laboratory conditions similar to those of soil solarization for six weed species: annual sowthistle, barnyardgrass, black nightshade, common purslane, London rocket, and tumble pigweed. Time and temperature requirements for thermal death varied considerably among the species studied. Barnyardgrass, London rocket, and annual sowthistle were more susceptible to heat treatment than black nightshade, common purslane, and tumble pigweed. Temperatures of 50 C and above were lethal for seeds of all species. Common purslane seeds were unaffected at 46 C and below, tumble pigweed and barnyardgrass seeds were unaffected at 42 C and below, and black nightshade seeds were unaffected at 39 C. Nonlinear models for mortality as a function of duration of heat treatment were developed for each species at each temperature at which mortality occurred. These models provide an empirical relationship for the construction of field-applicable decision models that could predict the accumulation of time and temperature combinations for effective solarization of weed seeds.


Sign in / Sign up

Export Citation Format

Share Document