scholarly journals Qualitative Confirmation of 9 Synthetic Cannabinoids and 20 Metabolites in Human Urine Using LC–MS/MS and Library Search

2013 ◽  
Vol 85 (7) ◽  
pp. 3730-3738 ◽  
Author(s):  
Ariane Wohlfarth ◽  
Karl B. Scheidweiler ◽  
Xiaohong Chen ◽  
Hua-fen Liu ◽  
Marilyn A. Huestis
2012 ◽  
Vol 897 ◽  
pp. 22-31 ◽  
Author(s):  
Andrew D. de Jager ◽  
Janet V. Warner ◽  
Michael Henman ◽  
Wendy Ferguson ◽  
Ashley Hall

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4474
Author(s):  
Yu Mi Park ◽  
Markus R. Meyer ◽  
Rolf Müller ◽  
Jennifer Herrmann

Zebrafish (Danio rerio) larvae have gained attention as a valid model to study in vivo drug metabolism and to predict human metabolism. The microinjection of compounds, oligonucleotides, or pathogens into zebrafish embryos at an early developmental stage is a well-established technique. Here, we investigated the metabolism of zebrafish larvae after microinjection of methyl 2-(1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3-dimethylbutanoate (7′N-5F-ADB) as a representative of recently introduced synthetic cannabinoids. Results were compared to human urine data and data from the in vitro HepaRG model and the metabolic pathway of 7′N-5F-ADB were reconstructed. Out of 27 metabolites detected in human urine samples, 19 and 15 metabolites were present in zebrafish larvae and HepaRG cells, respectively. The route of administration to zebrafish larvae had a major impact and we found a high number of metabolites when 7′N-5F-ADB was microinjected into the caudal vein, heart ventricle, or hindbrain. We further studied the spatial distribution of the parent compound and its metabolites by mass spectrometry imaging (MSI) of treated zebrafish larvae to demonstrate the discrepancy in metabolite profiles among larvae exposed through different administration routes. In conclusion, zebrafish larvae represent a superb model for studying drug metabolism, and when combined with MSI, the optimal administration route can be determined based on in vivo drug distribution.


2018 ◽  
Vol 10 (9) ◽  
pp. 1417-1429 ◽  
Author(s):  
Lukas Mogler ◽  
Florian Franz ◽  
Maurice Wilde ◽  
Laura M. Huppertz ◽  
Sebastian Halter ◽  
...  

1979 ◽  
Vol 41 (04) ◽  
pp. 718-733 ◽  
Author(s):  
Preben Kok

SummaryThree types of plasminogen activator could be distinguished in extracts from human uterine tissue. The activators differed in thermostability or in mode of inhibition by EACA.All the extracts contained stable as well as labile activators. The saline extracts were uniformly inhibited by increasing concentrations of EACA. Extracts made with 2 M ammonium thiocyanate were either uniformly inhibited by EACA or showed deflections indicating contamination with an activator, which was inhibited in a biphasic manner. It was possible to distinguish between: (1) An activator, abundantly present in the tissue, which was uniformly inhibited and stable. (2) Another uniformly inhibited activator, which was labile. (3) An activator, inhibited in a biphasic manner, similar to urokinase, which was present in varying amounts in uteri with the endometrium in the proliferative phase.Gel filtration of the uterine extracts showed two major activity peaks corresponding to particle sizes of 60,000 dalton and about 10,000 dalton.Antiserum to purified plasminogen activator, prepared from porcine ovaries, inhibited the activity of the human uterine extracts, but not the activities of human urokinase or urine. Urokinase antiserum in a concentration completely inhibiting human urine or urokinase, inhibited only 10% or less of the activities of human uterine extracts.


1995 ◽  
Vol 73 (05) ◽  
pp. 805-811 ◽  
Author(s):  
Yasuo Takahashi ◽  
Yoshitaka Hosaka ◽  
Hiromi Niina ◽  
Katsuaki Nagasawa ◽  
Masaaki Naotsuka ◽  
...  

SummaryWe examined the anticoagulant activity of two major molecules of soluble thrombomodulin purified from human urine. The apparent molecular weights of these urinary thrombomodulins (UTMs) were 72,000 and 79,000, respectively. Both UTMs showed more potent cofactor activity for protein C activation [specific activity >5,000 thrombomodulin units (TMU)/mg] than human placental thrombomodulin (2,180 TMU/mg) and rabbit lung thrombomodulin (1,980 TMU/mg). The UTMs prolonged thrombin-induced fibrinogen clotting time (>1 TMU/ml), APTT (>5 TMU/ml), TT (>5 TMU/ml) and PT (>40 TMU/ml) in a dose-dependent fashion. These effects appeared in the concentration range of soluble thrombomodulins present in human plasma and urine. In the rat DIC model induced by thromboplastin, administration of UTMs by infusion (300-3,000 TMU/kg) restored the hematological abnormalities derived from DIC in a dose-dependent fashion. These results demonstrate that UTMs exhibit potent anticoagulant and antithrombotic activities, and could play a physiologically important role in microcirculation.


Sign in / Sign up

Export Citation Format

Share Document