scholarly journals Emerging Water Technologies: Global Pressures Force Innovation toward Drinking Water Availability and Quality

2019 ◽  
Vol 52 (5) ◽  
pp. 1146-1147
Author(s):  
Paul Westerhoff ◽  
Treavor Boyer ◽  
Karl Linden
2018 ◽  
Vol 4 (1) ◽  
pp. 62-79 ◽  
Author(s):  
Swarup Dutta ◽  
Ishita Sinha ◽  
Adya Parashar

The present study identifies the multiplicity of issues and challenges faced by dalit women in accessing water from common, often distant sources of water, across five Indian states. Their reality of poor availability of drinking water was worsened by limited access to common resources due to their caste identity. On account of their social exclusion, dalit women suffer from physical as well as mental anguish. Discrimination against them is rampant on account of untouchability, and verbal and physical abuse accompanied with violence, which is a very real part of their everyday lives.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Chamaka Karunanayake ◽  
Miyuru B. Gunathilake ◽  
Upaka Rathnayake

Prediction of water resources for future years takes much attention from the water resources planners and relevant authorities. However, traditional computational models like hydrologic models need many data about the catchment itself. Sometimes these important data on catchments are not available due to many reasons. Therefore, artificial neural networks (ANNs) are useful soft computing tools in predicting real-world scenarios, such as forecasting future water availability from a catchment, in the absence of intensive data, which are required for modeling practices in the context of hydrology. These ANNs are capable of building relationships to nonlinear real-world problems using available data and then to use that built relationship to forecast future needs. Even though Sri Lanka has an extensive usage of water resources for many activities, including drinking water supply, irrigation, hydropower development, navigation, and many other recreational purposes, forecasting studies for water resources are not being carried out. Therefore, there is a significant gap in forecasting water availability and water needs in the context of Sri Lanka. Thus, this paper presents an artificial neural network model to forecast the inflows of one of the most important reservoirs in northern Sri Lanka using the upstream catchment’s rainfall. Future rainfall data are extracted using regional climate models for the years 2021–2050 and the inflows of the reservoir are forecasted using the validated neural network model. Several training algorithms including Levenberg–Marquardt (LM), BFGS quasi-Newton (BFG), scaled conjugate gradient (SCG) have been used to find the best fitting training algorithm to the prediction process of the inflows against the measured inflows. Results revealed that the LM training algorithm outperforms the other tests algorithm in developing the prediction model. In addition, the forecasted results using the projected climate scenarios clearly showcase the benefit of using the forecasting model in solving future water resource management to avoid or to minimize future water scarcity. Therefore, the validated model can effectively be used for proper planning of the proposed drinking water supply scheme to the nearby urban city, Jaffna in northern Sri Lanka.


2022 ◽  
pp. 609-624
Author(s):  
Tosin Kolajo Gbadegesin ◽  
Olawale Olayide

Water is crucial to life. This has led to the inclusion of a specific water-related target in the Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs). The study by World Health Organization (WHO) stated that about 663 million people worldwide have no adequate access to safe drinking water while UNICEF stated that about 65 million Nigerians have no access to safe water supplies. It is against this background that this study was conducted in Agbowo Community. The community has a high rate of economic poverty and poor living conditions. The study determined the gap between water supply and demand and enumerated physical and socio-economic variables that influence water availability. The study noted that a significant number of respondents expressed optimism despite the seriousness of the challenges and recommended massive remediation of the area as most of the water sources are contaminated by sewage.


2021 ◽  
Author(s):  
Phyu Phyu San ◽  
Midori Tuda ◽  
Masami Takagi

Abstract The predatory mite Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) is currently used as an efficient biological control agent of thrips, whiteflies and spider mites, which are economically damaging pests of ornamental plants and vegetable crops grown in greenhouses and fields worldwide. Currently, the effects of relative humidity (RH) and water availability on the optimal growth of A. swirskii are unknown. Here, we test the combined effects of different levels of RH (33%, 53%, 73% and 92%) and water availability on the development and reproduction of male and female A. swirskii feeding on the dried fruit mite, Carpoglyphus lactis (Linnaeus). While eggs failed to hatch at 33% RH, the survival rates of the immature stages at ≥ 53% RH increased solely in response to water availability and not due to changes in RH. Regarding growth and development, low RH extended the egg–adult duration and pre-oviposition period. We also found that the negative effects of low RH on adult longevity and fecundity were partially or completely eliminated when drinking water was available. For the life table parameters, the highest values of net reproductive rate (R0) and intrinsic rate of natural increase (r) were achieved at the highest RH when drinking water was available. Overall, water availability mitigated the negative effect of low RH on female reproduction, and female development was more sensitive to water availability than male development. Lastly, a comparison of similar research on A. swirskii suggested that water availability and RH are more influential on r than food source or temperature.


Author(s):  
J. Hussain ◽  
I. Husain ◽  
M. Arif

Abstract. Rajasthan, the largest State in India, has one of the most critical water statuses. Rajasthan, with more than 10.4 % of the country’s geographical area, supports more than 5.5 % of the human population and 18.70 % of the livestock, but only has 1.16 % of the total surface water available in the country. More than 60 % of the state is a part of the Great Thar Desert, and of the total 142 desert blocks in the country, 85 blocks are in the state of Rajasthan. The per capita annual water availability in the state is about 780 m3, compared with the minimum requirement of 1000 m3. It is feared that the availability would fall below 450 m3 by the year 2050. Thus, increasing population coupled with erratic rainfall further aggravates the water crisis. It is possible to harvest and augment water resources through the construction of small water harvesting structures called johads and the implementation of local water governance. This has been amply demonstrated by the successful experience of local communities in Alwar District in Rajasthan. Since 1985, 8600 johads have been built in 1086 villages. This has resulted in the rise in water levels in the shallow aquifer, increase in the area under single and double crops, increase in forest cover and drinking water supply security. The water collected in a johad during the monsoon penetrates into the sub-soil. This recharges the groundwater and improves the soil moisture in vast areas. The water in the johad can be used directly for irrigation, drinking water by animals, and other domestic purposes. The other advantage of this structure is that it checks soil erosion, mitigates floods, and ensures water availability in wells or boreholes used for drinking water supply, even for several successive drought years. Also, during the dry season when the water gradually recedes in the johad, the land inside the johad itself becomes available for cultivation.


2017 ◽  
Vol 15 (6) ◽  
pp. 1004-1014 ◽  
Author(s):  
Ahmad Komarulzaman ◽  
Eelke de Jong ◽  
Jeroen Smits

Abstract In recent years, the consumption of refillable bottled water has increased considerably in emerging countries. However, the quality of this water is often questionable, as authorities lack the capacity to properly check refilling depots. Given that refillable bottled water not only replaces unimproved water sources, but also better-quality sources, like piped and branded bottled water, its increasing use poses a major health risk. We investigate the motives behind the decision to switch to refillable bottled water in Indonesia. Findings indicate that this switch is driven by lifestyle motives, as well as by cost and availability considerations. It is mostly the young affluent households who switch from piped and ‘other’ sources to refillable bottled water. In rural areas, the tendency to make this switch is negatively affected by availability problems and the higher price of refillable bottled water. Availability and cost also influence the switch from branded bottled to refillable bottled water, but here it is the poorer households who have a higher propensity to switch. Further exploration of the lifestyle motive and affordability issues, as well as better monitoring of the refilling depots, are needed to improve the quality of drinking water in Indonesia and other emerging countries.


Sign in / Sign up

Export Citation Format

Share Document