Dual-Emissive Probe for Reversible Visualization of ΔΨm Revealing Voltage Heterogeneity in a Single Mitochondrion

2021 ◽  
Vol 93 (7) ◽  
pp. 3493-3501
Author(s):  
Minggang Tian ◽  
Jie Sun ◽  
Baoli Dong ◽  
Yanyan Ma ◽  
Weiying Lin
2021 ◽  
Vol 93 (11) ◽  
pp. 4993-4993
Author(s):  
Minggang Tian ◽  
Jie Sun ◽  
Baoli Dong ◽  
Yanyan Ma ◽  
Weiying Lin

Talanta ◽  
2021 ◽  
Vol 228 ◽  
pp. 122184
Author(s):  
Qingfeng Xia ◽  
Shumin Feng ◽  
Jiaxin Hong ◽  
Guoqiang Feng

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Rubem Figueiredo Sadok Menna-Barreto ◽  
Solange Lisboa de Castro

The pathogenic trypanosomatidsTrypanosoma brucei,Trypanosoma cruzi, andLeishmaniaspp. are the causative agents of African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. These diseases are considered to be neglected tropical illnesses that persist under conditions of poverty and are concentrated in impoverished populations in the developing world. Novel efficient and nontoxic drugs are urgently needed as substitutes for the currently limited chemotherapy. Trypanosomatids display a single mitochondrion with several peculiar features, such as the presence of different energetic and antioxidant enzymes and a specific arrangement of mitochondrial DNA (kinetoplast DNA). Due to mitochondrial differences between mammals and trypanosomatids, this organelle is an excellent candidate for drug intervention. Additionally, during trypanosomatids’ life cycle, the shape and functional plasticity of their single mitochondrion undergo profound alterations, reflecting adaptation to different environments. In an uncoupling situation, the organelle produces high amounts of reactive oxygen species. However, these species role in parasite biology is still controversial, involving parasite death, cell signalling, or even proliferation. Novel perspectives on trypanosomatid-targeting chemotherapy could be developed based on better comprehension of mitochondrial oxidative regulation processes.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Aleksandr B Stotland ◽  
Jennifer Ramil ◽  
Roberta A Gottlieb

In order to study mitochondrial turnover at the level of a single mitochondrion, our laboratory has developed the MitoTimer protein. Timer is a mutant of DsRed fluorescent protein developed by Terskikh et al. The Timer protein transitions from green fluorescence to a more stable red conformation as it matures over a span of 48 h. Furthermore, the protein is very stable under physiological conditions, insensitive to variations in ionic strength, and changes in pH between 7.0 and 8.0. Notably, Timer maturation from green to red is significantly slowed in deoxygenated buffer, suggesting that molecular oxygen plays a part in fluorophore maturation. We fused the Timer protein with the mitochondrial signal sequence from the cytochrome c oxidase subunit VIII (COX8) to target the protein to the inner membrane of the mitochondria, and further cloned the protein into a construct with a cardiac-restricted α-myosin heavy chain promoter. This construct was used to create the α-MHC MitoTimer mice. Surprisingly, initial analysis of the hearts from these mice reveals a remarkable degree of heterogeneity in the ratio of red-to- green fluorescence of MitoTimer in cardiac tissue. Furthermore, individual mitochondria within cardiomyocytes display a higher red-to-green fluorescence, implying a block in import of newly synthesized MitoTimer that would be caused by the lack of a high membrane potential, indicative of older, dysfunctional mitochondria. Initial studies suggest that these mice represent an elegant tool for the investigation of mitochondrial turnover in the heart.


2018 ◽  
Vol 16 (6) ◽  
pp. 385-390
Author(s):  
Shikha BINWAL ◽  
Jay K JOSHI ◽  
Shantanu Kumar KARKARI ◽  
Predhiman Krishan KAW ◽  
Lekha NAIR ◽  
...  

A floating emissive probe has been used to obtain the spatial electron temperature (Te) profile in a 13.56 MHz parallel plate capacitive coupled plasma. The effect of an external transverse magnetic field and pressure on the electron temperature profile has been discussed. In the un-magnetised case, the bulk region of the plasma has a uniform Te. Upon application of the magnetic field, the Te profile becomes non-uniform and skewed.  With increase in pressure, there is an overall reduction in electron temperature. The regions adjacent to the electrodes witnessed a higher temperature than the bulk for both cases. The emissive probe results have also been compared with particle-in-cell simulation results for the un-magnetised case.


2020 ◽  
Vol 15 (0) ◽  
pp. 1301082-1301082
Author(s):  
Shogo HATTORI ◽  
Hirohiko TANAKA ◽  
Shin KAJITA ◽  
Noriyasu OHNO

Vacuum ◽  
2018 ◽  
Vol 155 ◽  
pp. 566-571 ◽  
Author(s):  
Jian-quan Li ◽  
Wen-qi Lu ◽  
Jun Xu ◽  
Fei Gao ◽  
You-nian Wang

1990 ◽  
Vol 95 (1) ◽  
pp. 49-57 ◽  
Author(s):  
R. Woodward ◽  
K. Gull

We have used immunofluorescent detection of 5-bromo-2-deoxyuridine-substituted DNA in order to determine the timing of initiation and the duration of nuclear and kinetoplast S-phases within the procyclic stage of the Trypanosoma brucei cell cycle. Both nuclear and kinetoplast S-phases were shown to be periodic, occupying 0.18 and 0.12 of the unit cell cycle, respectively. In addition, initiation of both of these S-phases were in approximate synchrony, differing by only 0.03 of the unit cell cycle. We have also used a monoclonal antibody that recognises the basal bodies of T. brucei in order to visualise cells possessing a new pro-basal body and hence determine the time of pro-basal body formation within the cell cycle. Pro-basal body formation occurred within a few minutes of the initiation of nuclear S-phase, at 0.41 of the unit cell cycle. This provides detection of the earliest known cell cycle event in T. brucei at the level of the light microscope. Cell cycle events including initiation of nuclear and kinetoplast DNA replication and pro-basal body formation may be strictly coordinated in T. brucei in order to maintain the precise single-mitochondrion (kinetoplast), singleflagellum status of the interphase cell.


Sign in / Sign up

Export Citation Format

Share Document