Nanophase Separation in Immiscible Double Network Elastomers Induces Synergetic Strengthening, Toughening, and Fatigue Resistance

Author(s):  
Yong Zheng ◽  
Ryuji Kiyama ◽  
Takahiro Matsuda ◽  
Kunpeng Cui ◽  
Xueyu Li ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2263
Author(s):  
Manxi Sun ◽  
Jianhui Qiu ◽  
Chunyin Lu ◽  
Shuping Jin ◽  
Guohong Zhang ◽  
...  

The engineering applications of hydrogels are generally limited by the common problem of their softness and brittlness. In this study, a composite double network ionic hydrogel (CDN-gel) was obtained by the facile visible light triggered polymerization of acrylic acid (AA), polyvinyl alcohol (PVA), and hydrolyzed triethoxyvinylsilane (TEVS) and subsequent salt impregnation. The resulting CDN-gels exhibited high toughness, recovery ability, and notch-insensitivity. The tensile strength, fracture elongation, Young’s modulus, and toughness of the CDN-gels reached up to ~21 MPa, ~700%, ~3.5 MPa, and ~48 M/m3, respectively. The residual strain at a strain of 200% was only ~25% after stretch-release of 1000 cycles. These properties will enable greater application of these hydrogel materials, especially for the fatigue resistance of tough hydrogels, as well as broaden their applications in damping.


2016 ◽  
Vol 28 (16) ◽  
pp. 5710-5720 ◽  
Author(s):  
Qiang Chen ◽  
Xiaoqiang Yan ◽  
Lin Zhu ◽  
Hong Chen ◽  
Bing Jiang ◽  
...  

2003 ◽  
Vol 76 (4) ◽  
pp. 892-898 ◽  
Author(s):  
P. G. Santangelo ◽  
C. M. Roland

Abstract Double networks were prepared from guayule rubber (GR), deproteinized natural rubber (DPNR), and styrene-butadiene rubber (SBR), and their properties compared to conventional “single networks” having the same crosslink density. Substantial residual strains (> 150%) were obtained in all double networks, whereby the modulus parallel to the residual strain was enhanced. For the two strain-crystallizing elastomers, the fatigue resistance of the double networks (for extensions parallel to the residual strain) was higher than for their single network counterparts. Moreover, the guayule rubber, which is more strain-crystallizable than DPNR, exhibited the greater enhancement. For the amorphous SBR, on the other hand, the network structure had an insignificant effect on the fatigue life. These results demonstrate that longer mechanical fatigue lifetimes in double network rubbers are a consequence of their intrinsic orientation. This provides the capacity to retain crystallinity at the front of growing cracks, even in the absence of stress. The origin of the improved fatigue resistance is similar to the mechanism responsible for the better performance of strain-crystallizing rubbers subjected to non-relaxing cyclic deformations.


2019 ◽  
Vol 35 (3) ◽  
pp. 371-391
Author(s):  
AKANSHA DIXIT ◽  
◽  
DIBYENDU S. BAG ◽  
DHIRENDRA KUMAR SHARMA ◽  
HARJEET SINGH ◽  
...  

2019 ◽  
Vol 2019 (2) ◽  
pp. 36-42
Author(s):  
I.A. Ryabtsev ◽  
◽  
V.V. Knysh ◽  
A.A. Babinets ◽  
S.A. Solovej ◽  
...  
Keyword(s):  

Alloy Digest ◽  
2003 ◽  
Vol 52 (8) ◽  

Abstract Haynes 625SQ alloy is a modification of Haynes 625 alloy (see Alloy Digest Ni-354, January 1988) with tighter controls on chemistry and a finer grain size for fatigue resistance up to 680 deg C (1250 deg F). This datasheet provides information on composition, physical properties, microstructure, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance as well as heat treating. Filing Code: Ni-612. Producer or source: Haynes International Inc.


Alloy Digest ◽  
1994 ◽  
Vol 43 (2) ◽  

Abstract THERMO-SPAN ALLOY is a precipitation-hardenable superalloy with a low coefficient of expansion combined with tensile and stress-rupture strength. Thermal fatigue resistance is inherent. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming and heat treating. Filing Code: FE-105. Producer or source: Carpenter.


Alloy Digest ◽  
2006 ◽  
Vol 55 (10) ◽  

Abstract Alcoa extrusion alloy 2026 was developed as an improvement over 2024 and 2224 extrusions in aerospace structural applications where the governing selection criteria are high damage tolerance, good fatigue resistance, and a high degree of manufacturability. In addition to improved damage tolerance, extrusion alloy 2026-T3511 also has a significantly higher A-basis minimum strength than 2024-T3511 and 2224-T3511. This datasheet provides information on composition, tensile properties, and compressive strength as well as fatigue. It also includes information on corrosion resistance as well as forming. Filing Code: AL-401. Producer or source: AEAP-Alcoa Engineered Aerospace Products.


Sign in / Sign up

Export Citation Format

Share Document