Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities

2018 ◽  
Vol 119 (1) ◽  
pp. 664-699 ◽  
Author(s):  
Hyunho Kang ◽  
Joseph T. Buchman ◽  
Rebeca S. Rodriguez ◽  
Hattie L. Ring ◽  
Jiayi He ◽  
...  
2020 ◽  
Vol 17 (2) ◽  
pp. 88-100 ◽  
Author(s):  
Sundos Suleman Ismail Abdalla ◽  
Haliza Katas ◽  
Fazren Azmi ◽  
Mohd Fauzi Mh Busra

Fast progress in nanoscience and nanotechnology has contributed to the way in which people diagnose, combat, and overcome various diseases differently from the conventional methods. Metal nanoparticles, mainly silver and gold nanoparticles (AgNPs and AuNPs, respectively), are currently developed for many applications in the medical and pharmaceutical area including as antibacterial, antibiofilm as well as anti-leshmanial agents, drug delivery systems, diagnostics tools, as well as being included in personal care products and cosmetics. In this review, the preparation of AgNPs and AuNPs using different methods is discussed, particularly the green or bio- synthesis method as well as common methods used for their physical and chemical characterization. In addition, the mechanisms of the antimicrobial and anti-biofilm activity of AgNPs and AuNPs are discussed, along with the toxicity of both nanoparticles. The review will provide insight into the potential of biosynthesized AgNPs and AuNPs as antimicrobial nanomaterial agents for future use.


Author(s):  
Rinea Barbir ◽  
Rafael Ramírez Jiménez ◽  
Rafael Martín-Rapún ◽  
Vida Strasser ◽  
Darija Domazet Jurašin ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 844 ◽  
Author(s):  
Andrea Rónavári ◽  
Nóra Igaz ◽  
Dóra I. Adamecz ◽  
Bettina Szerencsés ◽  
Csaba Molnar ◽  
...  

The nanomaterial industry generates gigantic quantities of metal-based nanomaterials for various technological and biomedical applications; however, concomitantly, it places a massive burden on the environment by utilizing toxic chemicals for the production process and leaving hazardous waste materials behind. Moreover, the employed, often unpleasant chemicals can affect the biocompatibility of the generated particles and severely restrict their application possibilities. On these grounds, green synthetic approaches have emerged, offering eco-friendly, sustainable, nature-derived alternative production methods, thus attenuating the ecological footprint of the nanomaterial industry. In the last decade, a plethora of biological materials has been tested to probe their suitability for nanomaterial synthesis. Although most of these approaches were successful, a large body of evidence indicates that the green material or entity used for the production would substantially define the physical and chemical properties and as a consequence, the biological activities of the obtained nanomaterials. The present review provides a comprehensive collection of the most recent green methodologies, surveys the major nanoparticle characterization techniques and screens the effects triggered by the obtained nanomaterials in various living systems to give an impression on the biomedical potential of green synthesized silver and gold nanoparticles.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2682 ◽  
Author(s):  
Francis J. Osonga ◽  
Ali Akgul ◽  
Idris Yazgan ◽  
Ayfer Akgul ◽  
Gaddi B. Eshun ◽  
...  

Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: Aspergillus nidulans, Trichaptum biforme, Penicillium italicum, Fusarium oxysporum, and Colletotrichum gloeosporioides, while the class of bacteria employed include Pseudomonas aeruginosa, Aeromonas hydrophila, Escherichia coli, and Citrobacter freundii as Gram (−) bacteria, and Listeria monocytogenes and Staphylococcus epidermidis as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of A. nidulans growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively.


2013 ◽  
Vol 38 (6) ◽  
pp. 824 ◽  
Author(s):  
N. V. Tcherniega ◽  
K. I. Zemskov ◽  
V. V. Savranskii ◽  
A. D. Kudryavtseva ◽  
A. Y. Olenin ◽  
...  

2014 ◽  
Vol 14 (6) ◽  
pp. 4357-4362 ◽  
Author(s):  
Hongyan Zhao ◽  
Feng Song ◽  
Fengxiao Wang ◽  
Jiadong Liu ◽  
Yanling Liu ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Haliza Katas ◽  
Noor Zianah Moden ◽  
Chei Sin Lim ◽  
Terence Celesistinus ◽  
Jie Yee Chan ◽  
...  

Biosynthesized or biogenic metallic nanoparticles, particularly silver and gold nanoparticles (AgNPs and AuNPs, respectively), have been increasingly used because of their advantages, including high stability and loading capacity; moreover, these nanoparticles are synthesized using a green and cost-effective method. Previous studies have investigated reducing and/or stabilizing agents from various biological sources, including plants, microorganisms, and marine-derived products, using either a one-pot or a multistep process at different conditions. In addition, extensive studies have been performed to determine the biological or pharmacological effects of these nanoparticles, such as antimicrobial, antitumor, anti-inflammatory, and antioxidant effects. In the recent years, chitosan, a natural cationic polysaccharide, has been increasingly investigated as a reducing and/or stabilizing agent in the synthesis of biogenic metallic nanoparticles with potential applications in nanomedicine. Here, we have reviewed the mechanism of biosynthesis and potential applications of AgNPs and AuNPs and their chitosan-mediated nanocomposites in nanomedicine.


Sign in / Sign up

Export Citation Format

Share Document