Pore Characterization of Different Clay Minerals and Its Impact on Methane Adsorption Capacity

2020 ◽  
Vol 34 (10) ◽  
pp. 12204-12214
Author(s):  
Xiaomei Wang ◽  
Haijian Cheng ◽  
Pancun Chai ◽  
Jiahui Bian ◽  
Xiaoming Wang ◽  
...  
Author(s):  
Wen Liu ◽  
Qiuchen Xu ◽  
Haizhou Wang ◽  
Peng Liu ◽  
Ruiliang Guo ◽  
...  

AbstractQuantitative characterization of pore structure and analysis of influencing factors of methane adsorption are important segments in shale gas reservoir and resources evaluation and have not been systematically carried out in marine–continental shale series. A series of integrated methods, including total organic carbon (TOC) contents, Rock-Eval pyrolysis, mineral composition analysis, pore structure measurement, high-pressure CH4 adsorption analysis and FE-SEM observation, were conducted on 12 transitional shale samples of well WBC-1 in the southern North China Basin (SNCB). The results indicate that TOC contents of the transitional shales range from 1.03 to 8.06% with an average of 2.39%. The transitional shale consists chiefly of quartz, white mica and clay minerals. Interparticle pore, intraparticle pore, dissolution pore and microfracture were observed in the FE-SEM images. The specific surface area (SSA) of BET for the samples ranges from 3.3612 to 12.1217 m2/g (average: 6.9320 m2/g), whereas the DR SSA for the samples ranges from 12.9844 to 35.4267 m2/g (average: 19.67 m2/g). The Langmuir volume (VL) ranges from 2.05 to 4.75 cm3/g (average = 2.43 cm3/g). There is unobvious correction between BET and DR SSA with TOC contents, which means inorganic pores are the main component of pore space in the transitional shale from the SNCB. The relationship of SSA and pore volume shows that micropore has a greater impact on the CH4 adsorption capacity than mesopore–macropore in the transitional shale. Different from shales in other petroliferous basin, clay minerals are the primary factor affecting adsorption capacity of CH4 for transitional shale in this study. The pore structure of the transitional shale for this study is characterized by higher fractal dimension and more heterogeneous pore structure compared to shale in other petroliferous basin. This study provides an example and new revelation for the influencing factors of pore structure and methane adsorption capacity of marine–continental transitional shale.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1690
Author(s):  
Yong Han ◽  
Yanming Zhu ◽  
Yu Liu ◽  
Yang Wang ◽  
Han Zhang ◽  
...  

This study focuses on the nanostructure of shale samples with type III kerogen and its effect on methane adsorption capacity. The composition, pore size distribution, and methane adsorption capacities of 12 shale samples were analyzed by using the high-pressure mercury injection experiment, low-temperature N2/CO2 adsorption experiments, and the isothermal methane adsorption experiment. The results show that the total organic carbon (TOC) content of the 12 shale samples ranges from 0.70% to ~35.84%. In shales with type III kerogen, clay minerals and organic matter tend to be deposited simultaneously. When the TOC content is higher than 10%, the clay minerals in these shale samples contribute more than 70% of the total inorganic matter. The CO2 adsorption experimental results show that micropores in shales with type III kerogen are mainly formed in organic matter. However, mesopores and macropores are significantly affected by the contents of clay minerals and quartz. The methane isothermal capacity experimental results show that the Langmuir volume, indicating the maximum methane adsorption capacity, of all the shale samples is between 0.78 cm3/g and 9.26 cm3/g. Moreover, methane is mainly adsorbed in micropores and developed in organic matter, whereas the influence of mesopores and macropores on the methane adsorption capacity of shale with type III kerogen is small. At different stages, the influencing factors of methane adsorption capacity are different. When the TOC content is <1.4% or >4.5%, the methane adsorption capacity is positively correlated with the TOC content. When the TOC content is in the range of 1.4–4.5%, clay minerals have obviously positive effects on the methane adsorption capacity.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xianglu Tang ◽  
Wei Wu ◽  
Guanghai Zhong ◽  
Zhenxue Jiang ◽  
Shijie He ◽  
...  

Adsorbed gas is an important component of shale gas. The methane adsorption capacity of shale determines the composition of shale gas. In this study, the methane adsorption capacity of marine, transitional, and lacustrine shales in the Sichuan Basin was analyzed through its isothermal adsorption, mineral composition, water content, etc. The results show that the methane adsorption capacity of marine (Qiongzhusi Formation and Longmaxi Formation), transitional (Longtan Formation), and lacustrine (Xujiahe Formation and Ziliujing Formation) shales is significantly different. The Longtan Formation has the strongest methane adsorption capacity. This is primarily related to its high organic matter and organic matter type III content. The methane adsorption capacity of the lacustrine shale was the weakest. This is primarily related to the low thermal evolution degree and the high content of water-bearing clay minerals. Smectite has the highest methane adsorption capacity of the clay minerals, due to its crystal structure. The water content has a significant effect on methane adsorption largely because water molecules occupy the adsorption site. Additionally, the temperature and pressure in a specific range significantly affect methane adsorption capacity.


Fuel ◽  
2019 ◽  
Vol 251 ◽  
pp. 551-561 ◽  
Author(s):  
Peng Luo ◽  
Ningning Zhong ◽  
Imran Khan ◽  
Xiaomei Wang ◽  
Huajin Wang ◽  
...  

Fractals ◽  
2018 ◽  
Vol 26 (02) ◽  
pp. 1840006 ◽  
Author(s):  
KUNJIE LI ◽  
FANGUI ZENG ◽  
JIANCHAO CAI ◽  
GUANGLONG SHENG ◽  
PENG XIA ◽  
...  

For the purpose of investigating the fractal characteristics of pores in Taiyuan formation shale, a series of qualitative and quantitative experiments were conducted on 17 shale samples from well HD-1 in Hedong coal field of North China. The results of geochemical experiments show that Total organic carbon (TOC) varies from 0.67% to 5.32% and the organic matters are in the high mature or over mature stage. The shale samples consist mainly of clay minerals and quartz with minor pyrite and carbonates. The FE-SEM images indicate that three types of pores, organic-related pores, inorganic-related pores and micro-fractures related pores, are developed well, and a certain number of intragranular pores are found inside quartz and carbonates formed by acid liquid corrosion. The pore size distributions (PSDs) broadly range from several to hundreds nanometers, but most pores are smaller than 10[Formula: see text]nm. As the result of different adsorption features at relative pressure (0–0.5) and (0.5–1) on the N2 adsorption isotherm, two fractal dimensions [Formula: see text] and [Formula: see text] were obtained with the Frenkel–Halsey–Hill (FHH) model. [Formula: see text] and [Formula: see text] vary from 2.4227 to 2.6219 and from 2.6049 to 2.7877, respectively. Both TOC and brittle minerals have positive effect on [Formula: see text] and [Formula: see text], whereas clay minerals, have a negative influence on them. The fractal dimensions are also influenced by the pore structure parameters, such as the specific surface area, BJH pore volume, etc. Shale samples with higher [Formula: see text] could provide more adsorption sites leading to a greater methane adsorption capacity, whereas shale samples with higher [Formula: see text] have little influence on methane adsorption capacity.


Sign in / Sign up

Export Citation Format

Share Document