Potential Application of Fe2O3 and Functionalized SiO2 Nanoparticles for Inhibiting Asphaltene Precipitation in Live Oil at Reservoir Conditions

Author(s):  
Fatemeh Mahmoudi Alemi ◽  
Seyed Ali Mousavi Dehghani ◽  
Ali Rashidi ◽  
Negahdar Hosseinpour ◽  
Saber Mohammadi
SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 21-31 ◽  
Author(s):  
Ram R. Ratnakar ◽  
Cesar A. Mantilla ◽  
Birol Dindoruk

Summary Wettability alteration resulting from asphaltene precipitation in a reservoir affects rock/fluid interactions that have a potential impact on oil production, recovery, and flow in the production network. The current predictive wettability models are inherently inaccurate and do not consider asphaltene stability. This study investigates the impact of pressure-depletion-induced asphaltene precipitation on interfacial tension (IFT) and contact angle for live-oil and water systems at reservoir conditions (high pressure, high temperature), and it presents a graphical (quantitative) method for determining asphaltene onset pressure (AOP) based on interfacial behavior. Water/oil IFT was measured at reservoir temperature using a pendant-drop-shape method for a system of live oils over a range of pressures above and below the AOP, which was already independently determined by means of particle-size-distribution and solid-detection-system techniques. The same pressure and temperature conditions were used to measure contact angle with quartz in the presence of deionized (DI) water as the surrounding medium. The temperature was controlled with an accuracy of ±0.1°C. Some measurements were performed twice to ensure the reproducibility of the experiments and methodology. This work presents the experimental study to quantify the change in interfacial behavior because of asphaltene precipitation and deposition. IFT/contact-angle measurements above and below AOP show that the interfacial behavior follows the normal trends above AOP as observed in other water/hydrocarbon systems. However, as evident when the pressure was reduced below the AOP, a relatively sharp change in the trend is observed in both the IFT and contact angle, which is caused by asphaltene migration to the interface in a way that acts as a natural surfactant. As asphaltenes precipitate and deposit in the mineral substrate, the surface turns less water-wet and the contact angle naturally increases to balance the equilibrium forces. This study sets a quantitative and alternative method to determine AOP, and presents new experimental data on IFT/contact angle of live-oil and water systems at reservoir conditions. Near the wellbore, asphaltene deposition can lead to pore plugging, where a large number of pore volumes flow through the productive life of the well. In this scenario, the size of aggregates (of asphaltene) is an important factor, especially when it is comparable with the pore size. On the other hand, deep in the reservoir, the effects of asphaltene precipitation and deposition on interfacial properties are more important because this can lead to wettability alteration. Thus, the results of this technique can be used to assess the potential impacts deep in the reservoir.


2020 ◽  
Vol 12 (21) ◽  
pp. 24201-24208
Author(s):  
Peisong Liu ◽  
Xiaohong Li ◽  
Huanhuan Yu ◽  
Liyong Niu ◽  
Laigui Yu ◽  
...  

2011 ◽  
Vol 14 (8) ◽  
pp. 699-708 ◽  
Author(s):  
R. Z. Moreno ◽  
R. G. Santos ◽  
C. Okabe ◽  
D. J. Schiozer ◽  
O. V. Trevisan ◽  
...  

Author(s):  
Yaser Ahmadi ◽  
Babak Aminshahidy

An experimental and modeling approach was developed in this research to investigate the effects of CO2, new synthesized CaO and commercial SiO2 nanoparticle concentrations on the Asphaltene Precipitation Envelope (APE). First, the effects of different temperatures and CO2 concentrations on asphaltene precipitation trends were observed. Second, the impact of CaO and SiO2 nanoparticle concentrations on asphaltene precipitation were observed in the presence of CO2 at different temperatures. Third, Advanced Redlich-Kwong-Soave (RKSA) equation of state (EOS) was considered to modify Multiflash (Infochem Co.) software from the aspect of entering physical characteristics of CaO and SiO2 nanoparticles as pseudo components. Fourth, the developed model was used for predicting the effects of CO2, CaO and SiO2 concentrations on APE in ranges that no experimental data existed. At constant CO2 concentration and temperature during natural depletion, asphaltene precipitation increased above saturation pressure, while below saturation pressure, asphaltene precipitation decreased (solution gas evolved from crude oil and made it richer). As temperature increased at constant CO2 concentration, asphaltene precipitation decreased, while it was observed that the saturation pressures increased. Although two different trends were observed in upper asphaltene onsets at different temperatures and CO2 concentrations, in wide ranges of data, as temperature increased, asphaltene upper onset pressure increased. CaO and SiO2 nanoparticles decreased asphaltene precipitations in the presence of CO2, but CaO had better applications for reducing asphaltene precipitation. The proposed Software/RKSA EOS model was in good agreement with the obtained experimental data, and it was applicable for predicting the effects of CO2, CaO and SiO2 nanoparticles concentration on APE.


2020 ◽  
Vol 17 (6) ◽  
pp. 1683-1698 ◽  
Author(s):  
Xiao-Fei Sun ◽  
Zhao-Yao Song ◽  
Lin-Feng Cai ◽  
Yan-Yu Zhang ◽  
Peng Li

AbstractA novel experimental procedure was proposed to investigate the phase behavior of a solvent mixture (SM) (64 mol% CH4, 8 mol% CO2, and 28 mol% C3H8) with heavy oil. Then, a theoretical methodology was employed to estimate the phase behavior of the heavy oil–solvent mixture (HO–SM) systems with various mole fractions of SM. The experimental results show that as the mole fraction of SM increases, the saturation pressures and swelling factors of the HO–SM systems considerably increase, and the viscosities and densities of the HO–SM systems decrease. The heavy oil is upgraded in situ via asphaltene precipitation and SM dissolution. Therefore, the solvent-enriched oil phase at the top layer of reservoirs can easily be produced from the reservoir. The aforementioned results indicate that the SM has promising application potential for enhanced heavy oil recovery via solvent-based processes. The theoretical methodology can accurately predict the saturation pressures, swelling factors, and densities of HO–SM systems with various mole fractions of SM, with average error percentages of 1.77% for saturation pressures, 0.07% for swelling factors, and 0.07% for densities.


2020 ◽  
Vol 4 (6) ◽  
pp. 27-36
Author(s):  
akram Humoodi ◽  
Baroz Aziz ◽  
Dana Khidhir

Throughout the production and reservoir lifecycle, the asphaltene precipitation is an ever existing problem through changing the porosity, permeability and wettability leading to decline in production. The conditions that govern Asphaltene precipitation varies from well to well and from reservoir conditions of high pressure and temperature to surface conditions and need to be studied case by case. The modeling and predicting the phase behavior and precipitation of Asphaltene is paramount for wells in Kurdistan region as it is developing its oil and gas industry. Crude oil samples from three wells in Kurdistan Region-Iraq were selected for this study. Experimental data such as crude oil composition using Gas Chromatography, PVT analysis and reservoir pressure and temperature were used as input data into Computer Modeling Group CMG simulator and a model of Asphaltene phase behavior was suggested. The model suggests that the maximum precipitation occurs near the bubble point pressure at reservoir conditions. This is validated and compared with results in literature indicating similar behavior of crude oil. To predict the Asphaltene precipitation at surface condition a modified Colloidal Instability Index CII were used and the results were validated by De Bore plot


2019 ◽  
Vol 25 (8) ◽  
pp. 113-128
Author(s):  
Ali Anwar Ali ◽  
Mohammed S. Al-Jawad ◽  
Abdullah A. Ali

Asphaltene is a component class that may precipitate from petroleum as a highly viscous and sticky material that is likely to cause deposition problems in a reservoir, in production well, transportation, and in process plants. It is more important to locate the asphaltene precipitation conditions (precipitation pressure and temperature) before the occurring problem of asphaltene deposition to prevent it and eliminate the burden of high treatment costs of this problem if it happens. There are different models which are used in this flow assurance problem (asphaltene precipitation and deposition problem) and these models depend on experimental testing of asphaltene properties. In this study, the used model was equation of state (EOS) model and this model depends on PVT data and experimental data of asphaltene properties (AOP measurement) and its content (asphaltene weight percent). The report of PVT and flow assurance of the live oil from the well (HFx1) of the zone of case study (Sadi formation in Halfaya oil field) showed that there is a problem of asphaltene precipitation depending on asphaltene onset pressure (AOP) test from this report which showed high AOP greater than local reservoir pressure. Therefore this problem must be studied and the conditions of forming it determined. In the present work, the asphaltene precipitation of Halfaya oil field was modeled based on the equation of state (EOS) by using Soave-Redlich-Kwong (SRK) equation which gave the best matching with the experimental data. The main result of this study was that the reservoir conditions (pressure and temperature) were located in the asphaltene precipitation region which means that the asphaltene was precipitated from the oil and when the pressure of the reservoir decreases more with oil production or with time it will cause asphaltene deposition in the reservoir by plugging the pores and reducing the permeability of the formation.  


Sign in / Sign up

Export Citation Format

Share Document