Potential Role of Methanogens in Microbial Reductive Dechlorination of Organic Chlorinated Pollutants In Situ

Author(s):  
Jing Yuan ◽  
Shuyao Li ◽  
Jie Cheng ◽  
Chenxi Guo ◽  
Chaofeng Shen ◽  
...  
2000 ◽  
Vol 11 (9) ◽  
pp. 2987-2998 ◽  
Author(s):  
Kelly P. Smith ◽  
Jeanne Bentley Lawrence

The Cajal (coiled) body (CB) is a structure enriched in proteins involved in mRNA, rRNA, and snRNA metabolism. CBs have been shown to interact with specific histone and snRNA gene loci. To examine the potential role of CBs in U2 snRNA metabolism, we used a variety of genomic and oligonucleotide probes to visualize in situ newly synthesized U2 snRNA relative to U2 loci and CBs. Results demonstrate that long spacer sequences between U2 coding repeats are transcribed, supporting other recent evidence that U2 transcription proceeds past the 3′ box. The presence of bright foci of this U2 locus RNA differed between alleles within the same nucleus; however, this did not correlate with the loci's association with a CB. Experiments with specific oligonucleotide probes revealed signal for preU2 RNA within CBs. PreU2 was also detected in the locus-associated RNA foci, whereas sequences 3′ of preU2 were found only in these foci, not in CBs. This suggests that a longer primary transcript is processed before entry into CBs. Although this work shows that direct contact of a U2 locus with a CB is not simply correlated with RNA at that locus, it provides the first evidence of new preU2 transcripts within CBs. We also show that, in contrast to CBs, SMN gems do not associate with U2 gene loci and do not contain preU2. Because other evidence indicates that preU2 is processed in the cytoplasm before assembly into snRNPs, results point to an involvement of CBs in modification or transport of preU2 RNA.


2019 ◽  
Author(s):  
Subhrangshu Mandal ◽  
Sabyasachi Bhattacharya ◽  
Chayan Roy ◽  
Moidu Jameela Rameez ◽  
Jagannath Sarkar ◽  
...  

ABSTRACTTo explore the potential role of tetrathionate in the sulfur cycle of marine sediments, the population ecology of tetrathionate-forming, oxidizing, and respiring microorganisms was revealed at 15-30 cm resolution along two, ∼3-m-long, cores collected from 530- and 580-mbsl water-depths of Arabian Sea, off India’s west coast, within the oxygen minimum zone (OMZ). Metagenome analysis along the two sediment-cores revealed widespread occurrence of the structural genes that govern these metabolisms; high diversity and relative-abundance was also detected for the bacteria known to render these processes. Slurry-incubation of the sediment-samples, pure-culture isolation, and metatranscriptome analysis, corroborated thein situfunctionality of all the three metabolic-types. Geochemical analyses revealed thiosulfate (0-11.1 μM), pyrite (0.05-1.09 wt %), iron (9232-17234 ppm) and manganese (71-172 ppm) along the two sediment-cores. Pyrites (via abiotic reaction with MnO2) and thiosulfate (via oxidation by chemolithotrophic bacteria prevalentin situ) are apparently the main sources of tetrathionate in this ecosystem. Tetrathionate, in turn, can be either converted to sulfate (via oxidation by the chemolithotrophs present) or reduced back to thiosulfate (via respiration by native bacteria); 0-2.01 mM sulfide present in the sediment-cores may also reduce tetrathionate abiotically to thiosulfate and elemental sulfur. Notably tetrathionate was not detectedin situ- high microbiological and geochemical reactivity of this polythionate is apparently instrumental in the cryptic nature of its potential role as a central sulfur cycle intermediate. Biogeochemical roles of this polythionate, albeit revealed here in the context of OMZ sediments, may well extend to the sulfur cycles of other geomicrobiologically-distinct marine sediment horizons.


2019 ◽  
Author(s):  
Subhrangshu Mandal ◽  
Sabyasachi Bhattacharya ◽  
Chayan Roy ◽  
Moidu Jameela Rameez ◽  
Jagannath Sarkar ◽  
...  

Abstract. To explore the potential role of tetrathionate in the sulfur cycle of marine sediments, the population ecology of tetrathionate-forming, oxidizing, and respiring microorganisms was revealed at 15–30 cm resolution along two, ~ 3-m-long, cores collected from 530- and 580-mbsl water-depths of Arabian Sea, off India’s west coast, within the oxygen minimum zone (OMZ). Metagenome analysis along the two sediment-cores revealed widespread occurrence of the structural genes that govern these metabolisms; high diversity and relative-abundance was also detected for the bacteria known to render these processes. Slurry-incubation of the sediment-samples, pure-culture isolation, and metatranscriptome analysis, corroborated the in situ functionality of all the three metabolic-types. Geochemical analyses revealed thiosulfate (0–11.1 µM), pyrite (0.05–1.09 wt %), iron (9232–17234 ppm) and manganese (71–172 ppm) along the two sediment-cores. Pyrites (via abiotic reaction with MnO2) and thiosulfate (via oxidation by chemolithotrophic bacteria prevalent in situ) are apparently the main sources of tetrathionate in this ecosystem. Tetrathionate, in turn, can be either converted to sulfate (via oxidation by the chemolithotrophs present) or reduced back to thiosulfate (via respiration by native bacteria); 0–2.01 mM sulfide present in the sediment-cores may also reduce tetrathionate abiotically to thiosulfate and elemental sulfur. Notably tetrathionate was not detected in situ – high microbiological and geochemical reactivity of this polythionate is apparently instrumental in the cryptic nature of its potential role as a central sulfur cycle intermediate. Biogeochemical roles of this polythionate, albeit revealed here in the context of OMZ sediments, may well extend to the sulfur cycles of other geomicrobiologically-distinct marine sediment horizons.


Abstract This study investigated the diurnal cycle of convection over Sumatra Island in an active phase of the Madden-Julian Oscillation (MJO) during the Pre-Years of the Maritime Continent (YMC) observation campaign in December 2015 based on in-situ and satellite observations and a convection-permitting numerical model. Observations suggest that before the active phase of the MJO in early December, convection occurred frequently over the island during the afternoon and at midnight. By contrast, during the active phase of the MJO in mid-December, afternoon convection over the island was delayed and suppressed, and midnight convection was suppressed. Numerical experiments also successfully replicated the main features of the observed modulations. In general, during the active phase of the MJO, the troposphere became drier in the Sumatra region. While the clouds reduced the solar radiation over the land, the sea breeze was also found to be delayed and weakened. As a result, the afternoon convection initiation was delayed and weakened. Further analyses suggested that the sea breeze was weakened mainly due to the orographic stagnation effect rather than the slightly reduced land-sea temperature contrast. On the other hand, the increased stratiform-anvil clouds induced the anomalous evaporative cooling in the mid-troposphere and generated island-scale subsidence during the nighttime, which finally led to the suppression of inland convection. Overall, our study reveals the modulation of diurnal convection over Sumatra Island by an active phase of the MJO and also shows the potential role of land-sea interaction in convection initiation and maintenance.


1997 ◽  
Vol 31 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Andrew Lloyd ◽  
Gavin Dixon ◽  
Xu Feng Huang ◽  
Phillip Ward ◽  
Stan Catts ◽  
...  

Objective:To highlight the potential role of molecular biological studies in examining the expression of genes of interest in brain tissue to elucidate the pathophysiological basis of the major psychoses. Method:To review the principles underlying the available techniques for expression studies. Results:Detection of messenger RNA by in situ hybridisation and quantitation by Northern analysis are powerful tools to detect abnormalities in gene expression in brain tissue. Conclusion:The availability of simple techniques to examine the expression of RNA and protein products of individual genes, including examination at the level of individual cells, offers a clear opportunity to define the molecular basis of the major psychoses.


ISRN Oncology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Massimiliano D'Aiuto ◽  
Giuseppe Frasci ◽  
Maria Luisa Barretta ◽  
Adolfo Gallipoli ◽  
Giovanni Maria Ciuffo ◽  
...  

Purpose. To determine the diagnostic accuracy of DOBIComfortScan in patients with Breast Imaging Reporting suspect breast lesions (BI-RADS) 4-5 breast lesions. Materials and Methods. One-hundred and thirteen patients underwent DOBIComfortScan examination before surgery. Twelve parameters were taken into consideration to define DOBI findings. Results. Twenty-seven radical mastectomies, 47 quadrantectomies and 39 wide excisions, were performed. Overall, 65 invasive cancer, 9 in situ carcinoma and 39 nonmalignant lesions, were observed. Ten out of 12 considered parameters resulted significantly in association with histology at discriminant analysis. A summation score of 30.5 resulted to be the best cut off at ROC analysis, giving a sensitivity and specificity of 80% and 87%, respectively, and a positive predictive value of 92.2%. Finally the following DOBI-BI-RADS model was developed: malignant B5≥38 score); possibly malignant (B4=25-37 score); benign but the possibility of malignancy cannot be excluded (B3=20-24 score); benign (B2<20 score). Conclusion. definition of other parameters permits to improve the accuracy of this procedure. Further studies are warranted to define the potential role of DOBIComfortScan in breast cancer imaging.


2017 ◽  
Vol 262 ◽  
pp. 456-460 ◽  
Author(s):  
Constanze Richter ◽  
Harald Kalka ◽  
Horst Märten

The potential role of microorganisms in the in-situ recovery (ISR) of technology metals, in particular from reduced ores, is not well understood, but attracts increasing interest worldwide. Based on the feasibility criteria for ISR applications in general, effects of biota on kinetic rates of leaching are systematized. The indirect catalysis of leaching by microbial (re-)oxidation of Fe2+ to Fe3+ as directly acting e- acceptor is a well verified mechanism, however, for practical applications this requires the availability of an oxidant in the leachant. The ex-situ bio-oxidation of Fe in an aerated bioreactor is considered as an alternative. Reactive transport simulations of ISR from sulfidic Cu ores based on kinetic rates as function of pH and oxidation potential (concentration of e- acceptors) in comparison with thermodynamically driven metal dissolution (constrained by oxidation potential) demonstrate the key parameters for (bio-)leaching productivity.


Sign in / Sign up

Export Citation Format

Share Document