Coupling Light Emitting Diodes with Photocatalyst-Coated Optical Fibers Improves Quantum Yield of Pollutant Oxidation

2017 ◽  
Vol 51 (22) ◽  
pp. 13319-13326 ◽  
Author(s):  
Li Ling ◽  
Heather Tugaoen ◽  
Jonathon Brame ◽  
Shahnawaz Sinha ◽  
Chuanhao Li ◽  
...  
Author(s):  
Jinmeng Xiang ◽  
Xiaoqi Zhao ◽  
Hao Suo ◽  
Minkun Jin ◽  
Xue Zhou ◽  
...  

Controlling the light environment of plant growth using phosphor-converted light-emitting diodes (pc-LEDs) is an important means to regulate the growth rhythm and enhance the yield, in which bluish violet light...


RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 26415-26420
Author(s):  
Yue Yao ◽  
Si-Wei Zhang ◽  
Zijian Liu ◽  
Chun-Yun Wang ◽  
Ping Liu ◽  
...  

A Bi3+-doped Cs2SnCl6 exhibits photoluminescence at around 456 nm and a photoluminescence quantum yield of 31%. The blue LED based on the Bi3+-doped Cs2SnCl6 phosphor exhibits a long life of 120 hours and a CIE color coordinates of (0.14, 0.11).


Nanoscale ◽  
2017 ◽  
Vol 9 (45) ◽  
pp. 17849-17858 ◽  
Author(s):  
Yijun Zhang ◽  
Rongrong Yuan ◽  
Meiling He ◽  
Guangcai Hu ◽  
Jutao Jiang ◽  
...  

The first use of the combination of ammonium citrate (AC) and ethylenediamine tetraacetic acid (EDTA) as coordinating precursors for the synthesis of highly fluorescent (quantum yield = 67%) multicolour nitrogen-doped carbon dots (CDs) is reported.


1997 ◽  
Vol 488 ◽  
Author(s):  
George M. Daly ◽  
Hideyuki Murata ◽  
Charles D. Merritt ◽  
Zakya H. Kafafi ◽  
Hiroshi Inada ◽  
...  

AbstractEnhanced performance has been observed for plastic molecular organic light emitting diodes (MOLEDs) consisting of two to four organic layers sequentially vacuum vapor deposited onto patterned indium-tin oxide (ITO) on polyester films. For all device structures studied, the performance of plastic diodes is comparable to or better than their analogs on glass substrates. At 100 A/m2, a luminous power efficiency of 4.4 lm/W and external quantum yield of 2.7% are measured for a device structure consisting of two hole transport layers, a doped emitting layer and an electron transport layer on a polyester substrate. The same device made on a silica substrate has a luminous power efficiency of 3.5 lm/W and external quantum yield of 2.3%. Electrical and optical performance for comparable device structures has been characterized by current-voltage-luminance measurements and electroluminescence spectra collected normal to the emitting surface. In addition, an integrating sphere was used to collect the total light emitted and to determine the optical output coupling on glass versus plastic substrates.


2020 ◽  
Vol 2020 (18) ◽  
pp. 1736-1742
Author(s):  
Sandra F. H. Correia ◽  
Ricardo L. Fernandes ◽  
Lianshe Fu ◽  
Mariela M. Nolasco ◽  
Luís D. Carlos ◽  
...  

2018 ◽  
Vol 53 ◽  
pp. 01035
Author(s):  
Shulv Zhang ◽  
Yuhang Yin ◽  
Weiling Luan ◽  
Mengke Liu

Inorganic perovskite light-emitting diodes (PeLEDs) with full coverage and compact films were realized by doping a certain amount of PEO into perovskite emitting layer. The additive PEO (Polyethylene oxide) can not only improve the coverage of films by physically filling the pin-holes of crystal boundaries but also act as a protective layer to passivate the films, which successfully reduce the rate of non-radiative recombination, and enhance photoluminescence quantum yield (PLQY) of the CsPbBr3 films. In addition, PEO can also decrease the surface roughness of the perovskite films. As a result, the addition of PEO can improve the transport capability of carriers in PeLEDs. By optimizing the concentration of PEO, a maximum external quantum efficiency (EQE) of 0.26% and brightness of 1432 cd/m2 were achieved, which is significantly improved compared with previous work. The results presented in this paper shows that the additive PEO in perovskite precursor solution paves a new way for the application in PeLEDs.


2019 ◽  
Vol 55 (81) ◽  
pp. 12164-12167 ◽  
Author(s):  
Ya Liu ◽  
Miaoran Zhang ◽  
Yanfen Wu ◽  
Rui Zhang ◽  
Yi Cao ◽  
...  

A one-step solvothermal method was exploited to synthesize blue, yellow and red carbon dots with high quantum yield by altering the corresponding reaction solvent.


Sign in / Sign up

Export Citation Format

Share Document