Br-Doped CuO Multilamellar Mesoporous Nanosheets with Oxygen Vacancies and Cetyltrimethyl Ammonium Cations Adsorption for Optimizing Intermediate Species and Their Adsorption Behaviors toward CO2 Electroreduction to Ethanol with a High Faradaic Efficiency

2021 ◽  
Vol 60 (18) ◽  
pp. 14371-14381
Author(s):  
Wuzhengzhi Zhang ◽  
Lianchun Ding ◽  
Weipei Sun ◽  
Zhengcui Wu ◽  
Zheng Chen ◽  
...  
2020 ◽  
Vol 4 (7) ◽  
pp. 3726-3731
Author(s):  
Fenghui Ye ◽  
Jinghui Gao ◽  
Yilin Chen ◽  
Yunming Fang

Electroreduction of CO2 into value-added products is a promising technique in which the structure of the catalyst plays a crucial role.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chen Peng ◽  
Gan Luo ◽  
Junbo Zhang ◽  
Menghuan Chen ◽  
Zhiqiang Wang ◽  
...  

AbstractElectrochemical CO2 reduction can produce valuable products with high energy densities but the process is plagued by poor selectivities and low yields. Propanol represents a challenging product to obtain due to the complicated C3 forming mechanism that requires both stabilization of *C2 intermediates and subsequent C1–C2 coupling. Herein, density function theory calculations revealed that double sulfur vacancies formed on hexagonal copper sulfide can feature as efficient electrocatalytic centers for stabilizing both CO* and OCCO* dimer, and further CO–OCCO coupling to form C3 species, which cannot be realized on CuS with single or no sulfur vacancies. The double sulfur vacancies were then experimentally synthesized by an electrochemical lithium tuning strategy, during which the density of sulfur vacancies was well-tuned by the charge/discharge cycle number. The double sulfur vacancy-rich CuS catalyst exhibited a Faradaic efficiency toward n-propanol of 15.4 ± 1% at −1.05 V versus reversible hydrogen electrode in H-cells, and a high partial current density of 9.9 mA cm−2 at −0.85 V in flow-cells, comparable to the best reported electrochemical CO2 reduction toward n-propanol. Our work suggests an attractive approach to create anion vacancy pairs as catalytic centers for multi-carbon-products.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3052
Author(s):  
Hilmar Guzmán ◽  
Daniela Roldán ◽  
Adriano Sacco ◽  
Micaela Castellino ◽  
Marco Fontana ◽  
...  

Inspired by the knowledge of the thermocatalytic CO2 reduction process, novel nanocrystalline CuZnAl-oxide based catalysts with pyramidal mesoporous structures are here proposed for the CO2 electrochemical reduction under ambient conditions. The XPS analyses revealed that the co-presence of ZnO and Al2O3 into the Cu-based catalyst stabilize the CuO crystalline structure and introduce basic sites on the ternary as-synthesized catalyst. In contrast, the as-prepared CuZn- and Cu-based materials contain a higher amount of superficial Cu0 and Cu1+ species. The CuZnAl-catalyst exhibited enhanced catalytic performance for the CO and H2 production, reaching a Faradaic efficiency (FE) towards syngas of almost 95% at −0.89 V vs. RHE and a remarkable current density of up to 90 mA cm−2 for the CO2 reduction at −2.4 V vs. RHE. The physico-chemical characterizations confirmed that the pyramidal mesoporous structure of this material, which is constituted by a high pore volume and small CuO crystals, plays a fundamental role in its low diffusional mass-transfer resistance. The CO-productivity on the CuZnAl-catalyst increased at more negative applied potentials, leading to the production of syngas with a tunable H2/CO ratio (from 2 to 7), depending on the applied potential. These results pave the way to substitute state-of-the-art noble metals (e.g., Ag, Au) with this abundant and cost-effective catalyst to produce syngas. Moreover, the post-reaction analyses demonstrated the stabilization of Cu2O species, avoiding its complete reduction to Cu0 under the CO2 electroreduction conditions.


2020 ◽  
Author(s):  
Ruichao Pang ◽  
Pengfei Tian ◽  
Hongliang Jiang ◽  
Minghui Zhu ◽  
Xiaozhi Su ◽  
...  

Abstract Unveiling the structural evolution and working mechanism of catalysts under realistic operating conditions is crucial for the design of efficient electrocatalysts for CO2 electroreduction, yet remains highly challenging. Here, by virtue of operando structural measurements at multiscale levels, it is identified under CO2 electroreduction conditions that an as-prepared CeO2/BiOCl precatalyst gradually evolves into CeOx/Bi interface structure with enriched Ce3+ species, which serves as the real catalytically active phase. The derived CeOx/Bi interface structure compared to pure Bi counterpart delivers substantially enhanced performance with a formate Faradaic efficiency approaching 90% for 24 hours in a wide potential window. The formate Faradaic efficiency can be further increased by using isotope D2O instead of H2O. Density functional theory calculations suggest that the regenerative CeOx/Bi interfacial sites can not only promote water activation to increase local *H species for CO2 protonation appropriately, but also stabilize the key intermediate *OCHO in formate pathway.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Wanzhen Zheng ◽  
Feng Chen ◽  
Qi Zeng ◽  
Zhongjian Li ◽  
Bin Yang ◽  
...  

AbstractAtomically dispersed metal–nitrogen sites-anchored carbon materials have been developed as effective catalysts for CO2 electroreduction (CO2ER), but they still suffer from the imprecisely control of type and coordination number of N atoms bonded with central metal. Herein, we develop a family of single metal atom bonded by N atoms anchored on carbons (SAs–M–N–C, M = Fe, Co, Ni, Cu) for CO2ER, which composed of accurate pyrrole-type M–N4 structures with isolated metal atom coordinated by four pyrrolic N atoms. Benefitting from atomically coordinated environment and specific selectivity of M–N4 centers, SAs–Ni–N–C exhibits superior CO2ER performance with onset potential of − 0.3 V, CO Faradaic efficiency (F.E.) of 98.5% at − 0.7 V, along with low Tafel slope of 115 mV dec−1 and superior stability of 50 h, exceeding all the previously reported M–N–C electrocatalysts for CO2-to-CO conversion. Experimental results manifest that the different intrinsic activities of M–N4 structures in SAs–M–N–C result in the corresponding sequence of Ni > Fe > Cu > Co for CO2ER performance. An integrated Zn–CO2 battery with Zn foil and SAs–Ni–N–C is constructed to simultaneously achieve CO2-to-CO conversion and electric energy output, which delivers a peak power density of 1.4 mW cm−2 and maximum CO F.E. of 93.3%.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4457 ◽  
Author(s):  
Guillermo Díaz-Sainz ◽  
Manuel Alvarez-Guerra ◽  
Angel Irabien

Climate change has become one of the most important challenges in the 21st century, and the electroreduction of CO2 to value-added products has gained increasing importance in recent years. In this context, formic acid or formate are interesting products because they could be used as raw materials in several industries as well as promising fuels in fuel cells. Despite the great number of studies published in the field of the electrocatalytic reduction of CO2 to formic acid/formate working with electrocatalysts of different nature and electrode configurations, few of them are focused on the comparison of different electrocatalyst materials and electrode configurations. Therefore, this work aims at presenting a rigorous and comprehensive comparative assessment of different experimental data previously published after many years of research in different working electrode configurations and electrocatalysts in a continuous mode with a single pass of the inputs through the reactor. Thus, the behavior of the CO2 electroreduction to formate is compared operating with Sn and Bi-based materials under Gas Diffusion Electrodes (GDEs) and Catalyst Coated Membrane Electrodes (CCMEs) configurations. Considering the same electrocatalyst, the use of CCMEs improves the performance in terms of formate concentration and energy consumption. Nevertheless, higher formate rates can be achieved with GDEs because they allow operation at higher current densities of up to 300 mA·cm−2. Bi-based-GDEs outperformed Sn-GDEs in all the figures of merit considered. The comparison also highlights that in CCME configuration, the employ of Bi-based-electrodes enhanced the behavior of the process, increasing the formate concentration by 35% and the Faradaic efficiency by 11%.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2032 ◽  
Author(s):  
Beatriz Ávila-Bolívar ◽  
Leticia García-Cruz ◽  
Vicente Montiel ◽  
José Solla-Gullón

Herein, the electrochemical reduction of CO2 to formate on carbon-supported bismuth nanoparticles is reported. Carbon-supported Bi nanoparticles (about 10 nm in size) were synthesized using a simple, fast and scalable approach performed under room conditions. The so-prepared Bi electrocatalyst was characterized by different physicochemical techniques, including transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction and subsequently air-brushed on a carbon paper to prepare electrodes. These electrodes were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy and also by cyclic voltammetry. Finally, CO2 electroreduction electrolyses were performed at different electrode potentials for 3 h. At the optimal electrode potential (−1.6 V vs AgCl/Ag), the concentration of formate was about 77 mM with a faradaic efficiency of 93 ± 2.5%. A 100% faradaic efficiency was found at a lower potential (−1.5 V vs AgCl/Ag) with a formate concentration of about 55 mM. In terms of stability, we observed that after about 70 h (in 3 h electrolysis experiments at different potentials), the electrode deactivates due to the gradual loss of metal as shown by SEM/EDX analyses of the deactivated electrodes.


2017 ◽  
Vol 53 (57) ◽  
pp. 8085-8088 ◽  
Author(s):  
Feng-Yang Zhang ◽  
Tian Sheng ◽  
Na Tian ◽  
Li Liu ◽  
Chi Xiao ◽  
...  

Cu overlayers on tetrahexahedral Pd nanocrystals with {310} high-index facets exhibit a high Faradaic efficiency towards alcohols for CO2 electroreduction.


2018 ◽  
Vol 6 (40) ◽  
pp. 19438-19444 ◽  
Author(s):  
Xu-Jun He ◽  
Jin-Xian Feng ◽  
Qian Ren ◽  
Gao-Ren Li

Ni nanoparticle-decorated-MnO2 nanodendrites supported on carbon fibers (Ni NPs/MnO2 NDs-CFs) are reported as efficient electrocatalysts for CO2 reduction to formate, and they exhibit low CO2/HCOO− reduction overpotential, superior catalytic activity, high formate selectivity and high faradaic efficiency of over 85%.


2019 ◽  
Vol 55 (82) ◽  
pp. 12392-12395 ◽  
Author(s):  
Peng Fei Liu ◽  
Meng Yang Zu ◽  
Li Rong Zheng ◽  
Hua Gui Yang

BiOI microflower derived electrocatalysts, consisting of oxidized Bi2O2CO3 and metallic Bi with local shortened inter-layer Bi–Bi bonds, showed over 90% formate faradaic efficiency in a wide negative potential region.


Sign in / Sign up

Export Citation Format

Share Document