High-Throughput and Rapid Screening of Novel ACE Inhibitory Peptides from Sericin Source and Inhibition Mechanism by Using in Silico and in Vitro Prescriptions

2017 ◽  
Vol 65 (46) ◽  
pp. 10020-10028 ◽  
Author(s):  
Huaju Sun ◽  
Qing Chang ◽  
Long Liu ◽  
Kungang Chai ◽  
Guangyan Lin ◽  
...  
2019 ◽  
Vol 20 (17) ◽  
pp. 4159 ◽  
Author(s):  
Dingyi Yu ◽  
Cong Wang ◽  
Yufeng Song ◽  
Junxiang Zhu ◽  
Xiaojun Zhang

In order to rapidly and efficiently excavate antihypertensive ingredients in Todarodes pacificus, its myosin heavy chain was hydrolyzed in silico and the angiotensin-converting enzyme (ACE) inhibitory peptides were predicted using integrated bioinformatics tools. The results showed the degree of hydrolysis (DH) theoretically achieved 56.8% when digested with papain, ficin, and prolyl endopeptidase (PREP), producing 126 ACE inhibitory peptides. By predicting the toxicity, allergenicity, gastrointestinal stability, and intestinal epithelial permeability, 30 peptides were finally screened, of which 21 had been reported and 9 were new. Moreover, the newly discovered peptides were synthesized to evaluate their in vitro ACE inhibition, showing Ile-Ile-Tyr and Asn-Pro-Pro-Lys had strong effects with a pIC50 of 4.58 and 4.41, respectively. Further, their interaction mechanisms and bonding configurations with ACE were explored by molecular simulation. The preferred conformation of Ile-Ile-Tyr and Asn-Pro-Pro-Lys located in ACE were successfully predicted using the appropriate docking parameters. The molecular dynamics (MD) result indicated that they bound tightly to the active site of ACE by means of coordination with Zn(II) and hydrogen bonding and hydrophobic interaction with the residues in the pockets of S1 and S2, resulting in stable complexes. In summary, this work proposed a strategy for screening and identifying antihypertensive peptides from Todarodes pacificus.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1316
Author(s):  
Tanmoy Kumar Dey ◽  
Roshni Chatterjee ◽  
Rahul Shubhra Mandal ◽  
Anadi Roychoudhury ◽  
Debjyoti Paul ◽  
...  

Bellamya bengalensis muscle meat is known for ethnopharmacological benefits. The present study focuses on the identification of ACE inhibitory peptides from the proteolytic digests of muscle protein of Bellamya bengalensis and its underlying mechanism. After ultrafiltration of 120 min alcalase hydrolysates (BBPHA120) to isolate the small peptide fraction (<3 kDa), in vitro ACE inhibitory activity was analyzed. The IC50 value of the 120 min hydrolysate ultrafiltered fraction was 86.74 ± 0.575 µg/mL, while the IC50 of lisinopril was 0.31 ± 0.07 µg/mL. This fraction was assessed in a MALDI-ToF mass spectrometer and five peptides were identified from the mass spectrum based on their intensity (>1 × 104 A.U.). These peptides were sequenced via de novo sequencing. Based on the apparent hydrophobicity (%), the IIAPTPVPAAH peptide was selected for further analysis. The sequence was commercially synthesized by solid-phase standard Fmoc chemistry (purity 95–99.9%; by HPLC). The synthetic peptide (IC50 value 8.52 ± 0.779 µg/mL) was used to understand the thermodynamics of the inhibition by checking the binding affinity of the peptide to ACE by isothermal titration calorimetry compared with lisinopril, and the results were further substantiated by in silico site-specific molecular docking analysis. The results demonstrate that this peptide sequence (IIAPTPVPAAH) can be used as a nutraceutical with potent ACE inhibition.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhipeng Yu ◽  
Yang Chen ◽  
Wenzhu Zhao ◽  
Fuping Zheng ◽  
Long Ding ◽  
...  

AbstractFood-derived ACE inhibitory peptides have recently attracted increased attention. This work focused on a more efficient in silico method to find ACE inhibitory peptides from ovotransferrin. In this work, ovotransferrin was digested into peptides by virtual enzymolysis. Subsequently, in vitro ACE inhibitory activity of potential tripeptides was conducted following the peptide score, toxicity, and water solubility prediction. Both pharmacophore study and flexible docking were applied to analyze ACE inhibition mechanism of tripeptides. Our results demonstrated that EWL was a potent ACE inhibitory tripeptide with IC50 value of 380 ± 10 μM. Besides, pharmacophore and flexible docking showed that the pi interaction and hydrogen bond were the key interactions in ACE-EWL complex. It appears that the in vitro ACE inhibitory activity of tripeptide EWL was consistent with its molecular modeling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wen-Ying Liu ◽  
Jiang-Tao Zhang ◽  
Takuya Miyakawa ◽  
Guo-Ming Li ◽  
Rui-Zeng Gu ◽  
...  

AbstractThis study aimed to focus on the high-value utilization of raw wheat gluten by determining the potent antioxidant peptides and angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten oligopeptides (WOP). WOP were analyzed for in vitro antioxidant activity and inhibition of ACE, and the identification of active peptides was performed by reversed-phase high-performance liquid chromatography and mass spectrometry. Quantitative analysis was performed for highly active peptides. Five potent antioxidant peptides, Leu-Tyr, Pro-Tyr, Tyr-Gln, Ala-Pro-Ser-Tyr and Arg-Gly-Gly-Tyr (6.07 ± 0.38, 7.28 ± 0.29, 11.18 ± 1.02, 5.93 ± 0.20 and 9.04 ± 0.47 mmol 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) equivalent/g sample, respectively), and five potent ACE inhibitory peptides, Leu-Tyr, Leu-Val-Ser, Tyr-Gln, Ala-Pro-Ser-Tyr and Arg-Gly-Gly-Tyr (half maximal inhibitory concentration (IC50) values = 0.31 ± 0.02, 0.60 ± 0.03, 2.00 ± 0.13, 1.47 ± 0.08 and 1.48 ± 0.11 mmol/L, respectively), were observed. The contents of Leu-Tyr, Pro-Tyr, Tyr-Gln, Ala-Pro-Ser-Tyr, Arg-Gly-Gly-Tyr, and Leu-Val-Ser were 155.04 ± 8.36, 2.08 ± 0.12, 1.95 ± 0.06, 22.70 ± 1.35, 0.25 ± 0.01, and 53.01 ± 2.73 μg/g, respectively, in the WOP. Pro-Tyr, Tyr-Gln, Ala-Pro-Ser-Tyr, Arg-Gly-Gly-Tyr, and Leu-Val-Ser are novel antioxidative/ACE inhibitory peptides that have not been previously reported. The results suggest that WOP could potentially be applied in the food industry as a functional additive.


2020 ◽  
Vol 21 (3) ◽  
pp. 1059 ◽  
Author(s):  
Ruidan Wang ◽  
Xin Lu ◽  
Qiang Sun ◽  
Jinhong Gao ◽  
Lin Ma ◽  
...  

The aim of this study was to isolate and identify angiotensin I-converting enzyme (ACE) inhibitory peptides from sesame protein through simulated gastrointestinal digestion in vitro, and to explore the underlying mechanisms by molecular docking. The sesame protein was enzymatically hydrolyzed by pepsin, trypsin, and α-chymotrypsin. The degree of hydrolysis (DH) and peptide yield increased with the increase of digest time. Moreover, ACE inhibitory activity was enhanced after digestion. The sesame protein digestive solution (SPDS) was purified by ultrafiltration through different molecular weight cut-off (MWCO) membranes and SPDS-VII (< 3 kDa) had the strongest ACE inhibition. SPDS-VII was further purified by NGC Quest™ 10 Plus Chromatography System and finally 11 peptides were identified by Nano UHPLC-ESI-MS/MS (nano ultra-high performance liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry) from peak 4. The peptide GHIITVAR from 11S globulin displayed the strongest ACE inhibitory activity (IC50 = 3.60 ± 0.10 μM). Furthermore, the docking analysis revealed that the ACE inhibition of GHIITVAR was mainly attributed to forming very strong hydrogen bonds with the active sites of ACE. These results identify sesame protein as a rich source of ACE inhibitory peptides and further indicate that GHIITVAR has the potential for development of new functional foods.


2018 ◽  
Author(s):  
Muhammad Zohaib Aslam ◽  
Sana Shoukat ◽  
Zhao Hongfei ◽  
Zhang Bolin

AbstractProtein extracted from goat milk was hydrolyzed with LH (Lactobacillus Helveticus-cicc22171). Angiotensin Converting Enzyme (ACE) inhibitory peptides were purified from fermented samples of goat milk protein with LH by optimizing incubation time to 8 hours (S-8), 16 hours (S-16), 24 hours (S-24) and 36 hours (S-36), via ultrafiltration. Molecular weight cut-off; 10000 Da (PM-10) membrane was used to perform size exclusion chromatography. Sample with 24 h incubation time was considered as best hydrolyzed as compared to others, by applying Nin-Hydrin reaction and SDS-PAGE analysis. ACE inhibitory assay validated the authenticity of S-24 in inhibiting ACE, in vitro. Furthermore, Q executive Hybrid Quadrapole-Orbitrap Mass Spectrometry was used to determine molecular structure and amino acid sequence of ACE inhibitory peptides. Two protein groups VLPVPQKAVPQ and VLPVPQKVVPQ containing PVP, VVP along with one most abundant peptide TQTPVVVPPFLQPEIMGVPKVKE containing VPP has been identified with highest ACE inhibitory activity on the basis of intensity, small structure and higher concentration of hydrophobic and aromatic amino acids. Fermented goat milk containing these novel bioactive peptides, can be used as nutraceuticals to inhibit ACE and control hypertension.


Author(s):  
ANDRIATI NINGRUM ◽  
HELI SITI HALIMATUL MUNAWAROH

Objective: This study explores the sustainable valorization of by-products from tuna fish based on in silico approach. Methods: In silico approaches (BIOPEP database, PeptideRanker database, peptide calculator [PepCalc] database, and toxin prediction [ToxinPred] database) were employed to evaluate the potential of collagens from tuna as a potential source of bioactive peptides. Furthermore, primary structure, biological potential, physicochemical, sensory, and toxicity characteristics of the theoretically released angiotensin-converting enzyme (ACE) inhibitor collagen peptides were predicted. Results: Tuna collagen was selected as a potential precursor of bioactive peptides based on in silico analysis. Most notable among these are ACE inhibitory peptides. First, the potential of tuna collagen for the releasing bioactive peptides was evaluated by determining the frequency of occurrence of fragments with a given activity. Through the BIOPEP database analysis, there are many bioactive peptides in tuna collagen sequences. Then, an in silico proteolysis using selected enzymes (papain and pepsin) to obtained ACE inhibitory peptides was investigated and then analyzed using PeptideRanker and PepCalc. Cytotoxicity analysis using the online toxic prediction tool ToxinPred revealed that all in silico proteolysis-derived ACE inhibitory peptides are non-cytotoxic. Conclusions: Overall, the present study highlights that the tuna collagens could be a promising precursor of bioactive peptides that have an antihypertensive effect (ACE inhibitory activities) for developing functional food or nutraceutical products.


Sign in / Sign up

Export Citation Format

Share Document