Spectral Signatures of Ground- and Excited-State Wavepacket Interference after Impulsive Excitation

2020 ◽  
Vol 124 (34) ◽  
pp. 6856-6866 ◽  
Author(s):  
Colin Fitzpatrick ◽  
Johanan H. Odhner ◽  
Robert J. Levis
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rocío Borrego-Varillas ◽  
Artur Nenov ◽  
Piotr Kabaciński ◽  
Irene Conti ◽  
Lucia Ganzer ◽  
...  

AbstractDNA owes its remarkable photostability to its building blocks—the nucleosides—that efficiently dissipate the energy acquired upon ultraviolet light absorption. The mechanism occurring on a sub-picosecond time scale has been a matter of intense debate. Here we combine sub-30-fs transient absorption spectroscopy experiments with broad spectral coverage and state-of-the-art mixed quantum-classical dynamics with spectral signal simulations to resolve the early steps of the deactivation mechanisms of uridine (Urd) and 5-methyluridine (5mUrd) in aqueous solution. We track the wave packet motion from the Franck-Condon region to the conical intersections (CIs) with the ground state and observe spectral signatures of excited-state vibrational modes. 5mUrd exhibits an order of magnitude longer lifetime with respect to Urd due to the solvent reorganization needed to facilitate bulky methyl group motions leading to the CI. This activates potentially lesion-inducing dynamics such as ring opening. Involvement of the 1nπ* state is found to be negligible.


2018 ◽  
Vol 47 (12) ◽  
pp. 4279-4294 ◽  
Author(s):  
Kyu Hyung Park ◽  
Woojae Kim ◽  
Jaesung Yang ◽  
Dongho Kim

π-Conjugated oligothiophene is considered a chain segment of its polymeric counterpart with simper excited-state dynamics and spectral signatures.


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


2020 ◽  
Vol 22 (31) ◽  
pp. 17659-17667 ◽  
Author(s):  
Antonio H. da S. Filho ◽  
Gabriel L. C. de Souza
Keyword(s):  

In this work, ground and excited-state properties were used as descriptors for probing mechanisms as well as to assess potential alternatives for tackling the elimination of per- and poly-fluoroalkyl substances (PFAS).


Author(s):  
Weidong Qiu ◽  
Xinyi Cai ◽  
Mengke Li ◽  
Liangying Wang ◽  
Yanmei He ◽  
...  

Dynamic adjustment of emission behaviours by controlling the extent of twisted intramolecular charge transfer character in excited state.


Sign in / Sign up

Export Citation Format

Share Document