scholarly journals Rate Constant of the Reaction of OH Radicals with HBr over the Temperature Range 235–960 K

2021 ◽  
Vol 125 (8) ◽  
pp. 1754-1759
Author(s):  
Yuri Bedjanian
Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 208
Author(s):  
Guillermo García-Díez ◽  
Roger Monreal-Corona ◽  
Nelaine Mora-Diez

The thermodynamic stability of 11 complexes of Cu(II) and 26 complexes of Fe(III) is studied, comprising the ligands pyridoxamine (PM), ascorbic acid (ASC), and a model Amadori compound (AMD). In addition, the secondary antioxidant activity of PM is analyzed when chelating both Cu(II) and Fe(III), relative to the rate constant of the first step of the Haber-Weiss cycle, in the presence of the superoxide radical anion (O2•−) or ascorbate (ASC−). Calculations are performed at the M05(SMD)/6-311+G(d,p) level of theory. The aqueous environment is modeled by making use of the SMD solvation method in all calculations. This level of theory accurately reproduces the experimental data available. When put in perspective with the stability of various complexes of aminoguanidine (AG) (which we have previously studied), the following stability trends can be found for the Cu(II) and Fe(III) complexes, respectively: ASC < AG < AMD < PM and AG < ASC < AMD < PM. The most stable complex of Cu(II) with PM (with two bidentate ligands) presents a ΔGf0 value of −35.8 kcal/mol, whereas the Fe(III) complex with the highest stability (with three bidentate ligands) possesses a ΔGf0 of −58.9 kcal/mol. These complexes can significantly reduce the rate constant of the first step of the Haber-Weiss cycle with both O2•− and ASC−. In the case of the copper-containing reaction, the rates are reduced up to 9.70 × 103 and 4.09 × 1013 times, respectively. With iron, the rates become 1.78 × 103 and 4.45 × 1015 times smaller, respectively. Thus, PM presents significant secondary antioxidant activity since it is able to inhibit the production of ·OH radicals. This work concludes a series of studies on secondary antioxidant activity and allows potentially new glycation inhibitors to be investigated and compared relative to both PM and AG.


1980 ◽  
Vol 12 (12) ◽  
pp. 905-913 ◽  
Author(s):  
Andrea Maldotti ◽  
Claudio Chiorboli ◽  
Carlo A. Bignozzi ◽  
Carlo Bartocci ◽  
Vittorio Carassiti

1971 ◽  
Vol 26 (11) ◽  
pp. 1108-1116 ◽  
Author(s):  
R. Köster ◽  
K.-D. Asmus

The reactions of chlorinated ethylenes with hydrated electrons and OH radicals have been investigated by using the method of pulse radiolysis. In addition γ-ray experiments were carried out. The reduction of the solutes occurs via a dissoziation electron capture process. The rate constant for the reaction of eaq⊖ with the more chlorinated compounds is essentially diffusion controlled (k= (1 - 2×1010 l-mole-1 sec-1). Vinylchloride and 1,2-trans-dichloroethylene react more slowly. This can be related to the higher stability of the C-Cl bond in these compounds.Hydroxyl radicals add to the C=C double bond of the chlorinated ethylenes. The rate constant for the reaction with vinylchloride was determined to 7.1 × 109 1 · mole-1 sec-1, and decreases with increasing degree of chlorination of the ethylenes. This effect is explained by the decreasing electron density on the C-atoms and steric hinderance. The hydroxyl radical always adds to the C-atom carrying the smallest number of Cl-atoms. In its reaction with 1,2-dichloro-, trichloro- and tetrachloroethylene a radical is produced with an OH group and a Cl-atom on the same C-atom. It eliminates HCl to form a C=O bond with k>7 × 105 sec-1. The type radical produced in this reaction has an optical absorption in the near UV (ε265 nm = (1-3)×103 1 · mole-1 cm-1).The OH radical addition products of vinylchloride and 1,1-dichloroethylene do not eliminate HCl and have no absorption in the visible and near UV.


1996 ◽  
Vol 14 (6) ◽  
pp. 659-664 ◽  
Author(s):  
A. V. Ivanov ◽  
Y. M. Gershenzon ◽  
F. Gratpanche ◽  
P. Devolder ◽  
J.-P. Sawerysyn

Abstract. The uptake coefficients (Γ) for OH radicals on some dry salts of tropospheric interest (NaCl and NH4NO3) have been investigated as a function of temperature using the flow tube technique combined with an EPR spectrometer as a detection method. The temperature dependence of Γ-values measured over the temperature range 245–340 K can be expressed in Arrhenius form: ΓOHNaCl=(1.2±0.7)×10–5exp[(1750±200)/T] and ΓOHNH4NO3=(1.4±0.5)×10–4exp[(1000±100)/T]. These Arrhenius expressions lead to very similar Γ-values (~4×10–3) for both salts studied at 300 K. It is shown that the heterogeneous OH sinks on solids aerosol play a very minor role in tropospheric chemistry in comparison with the homogeneous sinks.


2016 ◽  
Vol 120 (45) ◽  
pp. 8923-8932 ◽  
Author(s):  
Emmanuel Assaf ◽  
Bo Song ◽  
Alexandre Tomas ◽  
Coralie Schoemaecker ◽  
Christa Fittschen
Keyword(s):  

1963 ◽  
Vol 41 (7) ◽  
pp. 1826-1831 ◽  
Author(s):  
F. W. Evans ◽  
A. H. Sehon

The thermal decomposition of peracetic acid in toluene, benzene, and p-xylene was studied over the temperature range 75–95°C. The main products of decomposition were found to be CH4, CO2, CH3COOH; small amounts of methanol, phenols, and polymeric compounds were also detected.The rate of the overall decomposition was first order with respect to peracetic acid, and the results could be explained by postulating the participation of the two simultaneous reactions:[Formula: see text] [Formula: see text]The rate constant of reaction (1) was independent of the solvent, whereas k2 was dependent on the solvent. The ratio k2/k1 was about 10.


1972 ◽  
Vol 25 (4) ◽  
pp. 803 ◽  
Author(s):  
NL Arthur ◽  
KS Yeo

Hydrogen atom abstraction from (CH3)2S by CF3 radicals has been studied in the temperature range 79-167�: (1) CF3 + CH3SCH3 ←→ CF3H + CH3SCH2 (-1) The rate constant, based on Ayscough's value of 1013.36cmS mol-l s-l for the recombination of CF3 radicals, is given by (k1 in cm3 mol-1 s-l, E in J mol-l): Logk1 = (12.05 � 0.02)-(28710 � 130)/2.303RT Combination of these results with thermochemical data gives a calculated value of log k-1 = 12.2 - 62600/2.303RT for the rate constant of the reverse reaction. ΔH�f(CH3SCH2) and S�(CH3SCH2) are estimated to be 155.6 kJ mol-l and 290 J K-l mol-1 respectively.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 674
Author(s):  
Roger Monreal-Corona ◽  
Jesse Biddlecombe ◽  
Angela Ippolito ◽  
Nelaine Mora-Diez

The thermodynamic stability of twenty-nine Fe(III) complexes with various deprotonated forms of lipoic (LA) and dihydrolipoic (DHLA) acids, with coordination numbers 4, 5 and 6, is studied at the M06(SMD)/6-31++G(d,p) level of theory in water under physiological pH conditions at 298.15 K. Even though the complexes with LA- are more stable than those with DHLA−, the most thermodynamically stable Fe(III) complexes involve DHLA2−. The twenty-four exergonic complexes are used to evaluate the secondary antioxidant activity of DHLA and LA relative to the Fe(III)/Fe(II) reduction by O2•− and ascorbate. Rate constants for the single-electron transfer (SET) reactions are calculated. The thermodynamic stability of the Fe(III) complexes does not fully correlate with the rate constant of their SET reactions, but more exergonic complexes usually exhibit smaller SET rate constants. Some Cu(II) complexes and their reduction to Cu(I) are also studied at the same level of theory for comparison. The Fe(III) complexes appear to be more stable than their Cu(II) counterparts. Relative to the Fe(III)/Fe(II) reduction with ascorbate, DHLA can fully inhibit the formation of •OH radicals, but not by reaction with O2•−. Relative to the Cu(II)/Cu(I) reduction with ascorbate, the effects of DHLA are moderate/high, and with O2•− they are minor. LA has minor to negligible inhibition effects in all the cases considered.


Sign in / Sign up

Export Citation Format

Share Document