Quantum Spin–Orbit Electronic State Selection of Atomic Transition Metal Vanadium Cation for Chemical Reactivity Studies

2019 ◽  
Vol 123 (12) ◽  
pp. 2310-2319 ◽  
Author(s):  
Yih Chung Chang ◽  
Bo Xiong ◽  
Yuntao Xu ◽  
Cheuk-Yiu Ng
2019 ◽  
Vol 21 (13) ◽  
pp. 6868-6877 ◽  
Author(s):  
Yih Chung Chang ◽  
Yuntao Xu ◽  
Cheuk-Yiu Ng

By utilizing a newly developed spin-orbit electronic state selected ion source for atomic transition metal vanadium cation (V+), the chemical reactivity of V+ with CO2 has been examined in detail, indicating that the titled reaction is dominantly governed by electron spin conservation, and thus the chemical reactivity can be controlled by quantum electronic state selections.


1986 ◽  
Vol 6 (6) ◽  
pp. 391-402 ◽  
Author(s):  
Mark L. Campbell ◽  
Nick Furio ◽  
Paul J. Dagdigian

Chemiluminescence cross sections for reaction of the individual spin–orbit states of metastable Ca(PJ03) with CH3I, CH2I2, and SF6 have been determined by the use of optical pumping state selection. This technique was also used to separate the chemiluminescence arising from the two excited metastable Ca 3P0 and 1D states. The spin–orbit dependence of the chemiluminescence pathway was found to be substantial for the CH3I and CH2I2 reactions and similar to that previously observed for halogen diatom and alkyl bromide reagents. By contrast, no spin–orbit effect was observed for Ca(3P0)+SF6. These results are discussed in terms of our previously presented model for the origin of spin–orbit effects in chemical reactions.


2014 ◽  
Vol 89 (23) ◽  
Author(s):  
Florian Geissler ◽  
François Crépin ◽  
Björn Trauzettel

Sign in / Sign up

Export Citation Format

Share Document