scholarly journals Nonlocal Interactions in the Double Perovskite Sr2FeMoO6 from Core-Level X-ray Spectroscopy

Author(s):  
Dibya Phuyal ◽  
Soham Mukherjee ◽  
Swarup K. Panda ◽  
Gabriel J. Man ◽  
Konstantin Simonov ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tamara Sloboda ◽  
Sebastian Svanström ◽  
Fredrik O. L. Johansson ◽  
Aneta Andruszkiewicz ◽  
Xiaoliang Zhang ◽  
...  

AbstractTime-resolved photoelectron spectroscopy can give insights into carrier dynamics and offers the possibility of element and site-specific information through the measurements of core levels. In this paper, we demonstrate that this method can access electrons dynamics in PbS quantum dots over a wide time window spanning from pico- to microseconds in a single experiment carried out at the synchrotron facility BESSY II. The method is sensitive to small changes in core level positions. Fast measurements at low pump fluences are enabled by the use of a pump laser at a lower repetition frequency than the repetition frequency of the X-ray pulses used to probe the core level electrons: Through the use of a time-resolved spectrometer, time-dependent analysis of data from all synchrotron pulses is possible. Furthermore, by picosecond control of the pump laser arrival at the sample relative to the X-ray pulses, a time-resolution limited only by the length of the X-ray pulses is achieved. Using this method, we studied the charge dynamics in thin film samples of PbS quantum dots on n-type MgZnO substrates through time-resolved measurements of the Pb 5d core level. We found a time-resolved core level shift, which we could assign to electron injection and charge accumulation at the MgZnO/PbS quantum dots interface. This assignment was confirmed through the measurement of PbS films with different thicknesses. Our results therefore give insight into the magnitude of the photovoltage generated specifically at the MgZnO/PbS interface and into the timescale of charge transport and electron injection, as well as into the timescale of charge recombination at this interface. It is a unique feature of our method that the timescale of both these processes can be accessed in a single experiment and investigated for a specific interface.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3876
Author(s):  
Jesús Valdés ◽  
Daniel Reséndiz ◽  
Ángeles Cuán ◽  
Rufino Nava ◽  
Bertha Aguilar ◽  
...  

The effect of microwave radiation on the hydrothermal synthesis of the double perovskite Sr2FeMoO6 has been studied based on a comparison of the particle size and structural characteristics of products from both methods. A temperature, pressure, and pH condition screening was performed, and the most representative results of these are herein presented and discussed. Radiation of microwaves in the hydrothermal synthesis method led to a decrease in crystallite size, which is an effect from the reaction temperature. The particle size ranged from 378 to 318 nm when pH was 4.5 and pressure was kept under 40 bars. According to X-ray diffraction (XRD) results coupled with the size-strain plot method, the product obtained by both synthesis methods (with and without microwave radiation) have similar crystal purity. The Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) techniques showed that the morphology and the distribution of metal ions are uniform. The Curie temperature obtained by thermogravimetric analysis indicates that, in the presence of microwaves, the value was higher with respect to traditional synthesis from 335 K to 342.5 K. Consequently, microwave radiation enhances the diffusion and nucleation process of ionic precursors during the synthesis, which promotes a uniform heating in the reaction mixture leading to a reduction in the particle size, but keeping good crystallinity of the double perovskite. Precursor phases and the final purity of the Sr2FeMoO6 powder can be controlled via hydrothermal microwave heating on the first stages of the Sol-Gel method.


Author(s):  
Zhilin Wang ◽  
Xieming Xu ◽  
Shuaihua Wang ◽  
Hui Xu ◽  
Weiwei Xu ◽  
...  

1980 ◽  
Vol 22 (10) ◽  
pp. 4994-4996 ◽  
Author(s):  
L. A. Feldkamp ◽  
L. C. Davis
Keyword(s):  

1987 ◽  
Vol 2 (6) ◽  
pp. 768-774 ◽  
Author(s):  
Z. Iqbal ◽  
E. Leone ◽  
R. Chin ◽  
A. J. Signorelli ◽  
A. Bose ◽  
...  

The x-ray photoemission spectroscopie (XPS) data from different pelletized samples of the 90 K superconductor Ba2YCu3O7−δ (where δ∼0.2) have been obtained. The valence band spectrum (recorded at 300 and 170 K), which is composed of contributions from both the Cu 3d and O 2p levels, is compared with the full potential linearized augmented plane wave (FLAPW) calculated electronic density-of-states (DOS) reported by Massidda et al. and Mattheiss and Hamann. The experimental data indicate a relatively low DOS at the Fermi level. Detailed measurements of the core level Cu 2p, O 1s, Ba 3d, 4d, and Y 3d spectra of the superconducting and related standard materials, are presented. Data for the superconducting material were recorded in the freshly prepared form as well as after scraping in situ. The Cu 2p core level, satellite, and Auger spectra for the various samples were carefully examined in order to assess the possibility of the presence of Cu3+ ions in Ba2YCu3O7-δ. It is observed that surface reaction in air to form carbonates and hydroxides occurs readily in the superconducting material.


Sign in / Sign up

Export Citation Format

Share Document