Satellite structures in Mn 2p X-ray photoemission core-level spectra of Mn/Au(001) and Mn/Pt(001) thin-film systems

2012 ◽  
Vol 60 (7) ◽  
pp. 1063-1067
Author(s):  
Wondong Kim ◽  
Chanyong Hwang ◽  
Ilyou Kim
Keyword(s):  
1993 ◽  
Vol 07 (08) ◽  
pp. 555-564 ◽  
Author(s):  
P. SRIVASTAVA ◽  
N. L. SAINI ◽  
B. R. SEKHAR ◽  
S. K. SHARMA ◽  
H. S. CHAUHAN ◽  
...  

A thin film of superconducting YBa 2 Cu 3 O ~7 (YBCO) system (Tc ~ 89 K ) has been studied by x-ray photoelectron spectroscopy (XPS) to investigate the core level electronic structure. The Ba 3d and 4d core level XPS spectra show three binding energy components with the high binding energy component originating from the non-superconducting surface of the system. The role of oxygen ordering/disordering has been discussed to explain the origin of the other two bulk-dependent components. An attempt has been made to resolve some of the discrepancies in the Ba core level spectra reported earlier.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Author(s):  
J N Chapman ◽  
W A P Nicholson

Energy dispersive x-ray microanalysis (EDX) is widely used for the quantitative determination of local composition in thin film specimens. Extraction of quantitative data is usually accomplished by relating the ratio of the number of atoms of two species A and B in the volume excited by the electron beam (nA/nB) to the corresponding ratio of detected characteristic photons (NA/NB) through the use of a k-factor. This leads to an expression of the form nA/nB = kAB NA/NB where kAB is a measure of the relative efficiency with which x-rays are generated and detected from the two species.Errors in thin film x-ray quantification can arise from uncertainties in both NA/NB and kAB. In addition to the inevitable statistical errors, particularly severe problems arise in accurately determining the former if (i) mass loss occurs during spectrum acquisition so that the composition changes as irradiation proceeds, (ii) the characteristic peak from one of the minority components of interest is overlapped by the much larger peak from a majority component, (iii) the measured ratio varies significantly with specimen thickness as a result of electron channeling, or (iv) varying absorption corrections are required due to photons generated at different points having to traverse different path lengths through specimens of irregular and unknown topography on their way to the detector.


Author(s):  
Karimat El-Sayed

Lead telluride is an important semiconductor of many applications. Many Investigators showed that there are anamolous descripancies in most of the electrophysical properties of PbTe polycrystalline thin films on annealing. X-Ray and electron diffraction studies are being undertaken in the present work in order to explain the cause of this anamolous behaviour.Figures 1-3 show the electron diffraction of the unheated, heated in air at 100°C and heated in air at 250°C respectively of a 300°A polycrystalline PbTe thin film. It can be seen that Fig. 1 is a typical [100] projection of a face centered cubic with unmixed (hkl) indices. Fig. 2 shows the appearance of faint superlattice reflections having mixed (hkl) indices. Fig. 3 shows the disappearance of thf superlattice reflections and the appearance of polycrystalline PbO phase superimposed on the [l00] PbTe diffraction patterns. The mechanism of this three stage process can be explained on structural basis as follows :


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


Author(s):  
Jonathan Ogle ◽  
Daniel Powell ◽  
Eric Amerling ◽  
Detlef Matthias Smilgies ◽  
Luisa Whittaker-Brooks

<p>Thin film materials have become increasingly complex in morphological and structural design. When characterizing the structure of these films, a crucial field of study is the role that crystallite orientation plays in giving rise to unique electronic properties. It is therefore important to have a comparative tool for understanding differences in crystallite orientation within a thin film, and also the ability to compare the structural orientation between different thin films. Herein, we designed a new method dubbed the mosaicity factor (MF) to quantify crystallite orientation in thin films using grazing incidence wide-angle X-ray scattering (GIWAXS) patterns. This method for quantifying the orientation of thin films overcomes many limitations inherent in previous approaches such as noise sensitivity, the ability to compare orientation distributions along different axes, and the ability to quantify multiple crystallite orientations observed within the same Miller index. Following the presentation of MF, we proceed to discussing case studies to show the efficacy and range of application available for the use of MF. These studies show how using the MF approach yields quantitative orientation information for various materials assembled on a substrate.<b></b></p>


Sign in / Sign up

Export Citation Format

Share Document