Distorted Janus Transition Metal Dichalcogenides: Stable Two-Dimensional Materials with Sizable Band Gap and Ultrahigh Carrier Mobility

2018 ◽  
Vol 122 (33) ◽  
pp. 19153-19160 ◽  
Author(s):  
Xiao Tang ◽  
Shengshi Li ◽  
Yandong Ma ◽  
Aijun Du ◽  
Ting Liao ◽  
...  
Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1245 ◽  
Author(s):  
Kun Yang ◽  
Hongxia Liu ◽  
Shulong Wang ◽  
Wei Li ◽  
Tao Han

Transition metal dichalcogenides (TMDCs) have received wide attention as a new generation of semiconductor materials. However, there are still many problems to be solved, such as low carrier mobility, contact characteristics between metal and two-dimensional materials, and complicated fabrication processes. In order to overcome these problems, a large amount of research has been carried out so that the performance of the device has been greatly improved. However, most of these studies are based on complicated fabrication processes which are not conducive to the improvement of integration. In view of this problem, a horizontal-gate monolayer MoS2 transistor based on image force barrier reduction is proposed, in which the gate is in the same plane as the source and drain and comparable to back-gated transistors on-off ratios up to 1 × 104 have been obtained. Subsequently, by combining the Y-Function method (YFM) and the proposed diode equivalent model, it is verified that Schottky barrier height reduction is the main reason giving rise to the observed source-drain current variations. The proposed structure of the device not only provides a new idea for the high integration of two-dimensional devices, but also provides some help for the study of contact characteristics between two-dimensional materials and metals.


2021 ◽  
Author(s):  
Mubashir A. Kharadi ◽  
Gul Faroz A. Malik ◽  
Farooq A. Khanday

2D materials like transition metal dichalcogenides, black phosphorous, silicene, graphene are at the forefront of being the most potent 2D materials for optoelectronic applications because of their exceptional properties. Several application-specific photodetectors based on 2D materials have been designed and manufactured due to a wide range and layer-dependent bandgaps. Different 2D materials stacked together give rise to many surprising electronic and optoelectronic phenomena of the junctions based on 2D materials. This has resulted in a lot of popularity of 2D heterostructures as compared to the original 2D materials. This chapter presents the progress of optoelectronic devices (photodetectors) based on 2D materials and their heterostructures.


Nanoscale ◽  
2021 ◽  
Author(s):  
Pu Tan ◽  
Kaixuan Ding ◽  
Xiumei Zhang ◽  
Zhenhua Ni ◽  
Kostya Ostrikov ◽  
...  

Because of suitable band gap and high mobility, two-dimensional transition metal dichalcogenides (TMDs) materials are promising in future microelectronic devices. However, controllable p-type and n-type doping of TMDs is still...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Battulga Munkhbat ◽  
Andrew B. Yankovich ◽  
Denis G. Baranov ◽  
Ruggero Verre ◽  
Eva Olsson ◽  
...  

Abstract The ability to extract materials just a few atoms thick has led to the discoveries of graphene, monolayer transition metal dichalcogenides (TMDs), and other important two-dimensional materials. The next step in promoting the understanding and utility of flatland physics is to study the one-dimensional edges of these two-dimensional materials as well as to control the edge-plane ratio. Edges typically exhibit properties that are unique and distinctly different from those of planes and bulk. Thus, controlling the edges would allow the design of materials with combined edge-plane-bulk characteristics and tailored properties, that is, TMD metamaterials. However, the enabling technology to explore such metamaterials with high precision has not yet been developed. Here we report a facile and controllable anisotropic wet etching method that allows scalable fabrication of TMD metamaterials with atomic precision. We show that TMDs can be etched along certain crystallographic axes, such that the obtained edges are nearly atomically sharp and exclusively zigzag-terminated. This results in hexagonal nanostructures of predefined order and complexity, including few-nanometer-thin nanoribbons and nanojunctions. Thus, this method enables future studies of a broad range of TMD metamaterials through atomically precise control of the structure.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jing Han ◽  
Yingwei Wang ◽  
Jun He ◽  
Hua Lu ◽  
Xiangping Li ◽  
...  

Two-dimensional materials, such as transition metal dichalcogenides (TMDs) exhibit intriguing physical properties that lead to both fundamental research and technology development. The recently emerged platinum diselenide (PtSe2), as a new...


Nanoscale ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 4537-4543 ◽  
Author(s):  
Lu Li ◽  
Lihui Pang ◽  
Qiyi Zhao ◽  
Yonggang Wang ◽  
Wenjun Liu

Group VB transition metal dichalcogenides (TMDCs) are emerging two-dimensional materials and have attracted significant interests in the fields of physics, chemistry, and material sciences.


2015 ◽  
Vol 44 (9) ◽  
pp. 2603-2614 ◽  
Author(s):  
Agnieszka Kuc ◽  
Thomas Heine

Transition-metal dichalcogenides TX2 (T = W, Mo; X = S, Se, Te) are layered materials that are available in ultrathin forms such as mono-, bi- and multilayers, which are commonly known as two-dimensional materials.


Sign in / Sign up

Export Citation Format

Share Document