scholarly journals Resonant Ptychographic Tomography Facilitates Three-Dimensional Quantitative Colocalization of Catalyst Components and Chemical Elements

2018 ◽  
Vol 122 (40) ◽  
pp. 22920-22929 ◽  
Author(s):  
Johannes Ihli ◽  
Ana Diaz ◽  
Yuying Shu ◽  
Manuel Guizar-Sicairos ◽  
Mirko Holler ◽  
...  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ilse Valenzuela Matus ◽  
Jorge Lino Alves ◽  
Joaquim Góis ◽  
Augusto Barata da Rocha ◽  
Rui Neto ◽  
...  

Purpose The purpose of this paper is to prove and qualify the influence of textured surface substrates morphology and chemical composition on the growth and propagation of transplanted corals. Use additive manufacturing and silicone moulds for converting three-dimensional samples into limestone mortar with white Portland cement substrates for coral growth. Design/methodology/approach Tiles samples were designed and printed with different geometries and textures inspired by nature marine environment. Commercial coral frag tiles were analysed through scanning electron microscopy (SEM) to identify the main chemical elements. Raw materials and coral species were selected. New base substrates were manufactured and deployed into a closed-circuit aquarium to monitor the coral weekly evolution process and analyse the results obtained. Findings Experimental results provided positive statistical parameters for future implementation tests, concluding that the intensity of textured surface, interfered favourably in the coralline algae biofilm growth. The chemical composition and design of the substrates were determinant factors for successful coral propagation. Recesses and cavities mimic the natural rocks aspect and promoted the presence and interaction of other species that favour the richness of the ecosystem. Originality/value Additive manufacturing provided an innovative method of production for ecology restoration areas, allowing rapid prototyping of substrates with high complexity morphologies, a critical and fundamental attribute to guarantee coral growth and Crustose Coralline Algae. The result of this study showed the feasibility of this approach using three-dimensional printing technologies.


Author(s):  
B. Firoozabadi ◽  
H. Afshin ◽  
E. Safaaee

Density currents are continuous currents which move down-slope due to the fact that their density is greater than that of ambient water. The density difference is caused by temperature differences, chemical elements, dissolved materials, or suspended sediment. Many researchers have studied the density current structures, their complexities and uncertainties. However, there is not a detailed 3-D turbulent density current data set perfectly. In this work, the structure of 3-dimensional salt solution density currents is investigated. A laboratory channel was used to study the flow resulting from the release of salt solution into freshwater over an inclined bed. The experiments were conducted with different bottom slopes, inlet concentrations and flow rates. In these tests, the instantaneous velocities are measured by an ADV apparatus (Acoustic Doppler Velocimeter). Results show that by increasing the bed-slope and inlet concentrations, the height of the current decreases. As the density current moves downward the channel or by increasing the discharge, the height of the density current increases. Finally, the effects of different variables such as the bed slope, concentration and flow rate of entering fluid on the velocity profile in different distances from the entrance is studied. The entrainment coefficient, lateral spreading and drag coefficient of the bed and shear layer between salt solution and ambient water is discussed.


Author(s):  
N. A. Poklonski

The article, in the form of a minireview, reflects the results of theoretical, and partly experimental investigations of the electrical, optical and magnetic phenomena in three-dimensional, two-dimensional, one-dimensional and zero-dimensional systems and elements of device structures made of germanium, silicon, carbon and other chemical elements carried out at the Faculty of Physics of Belarusian State University over the past 25 years.


2020 ◽  
Vol 243 ◽  
pp. 388
Author(s):  
Galina Sarapulova

The soil assessment was carried out in the technogenically-affected area of Irkutsk Oblast with the geochemical approach as a key geoecological method using physical and chemical techniques of analysis and ecodiagnostics. Diagnostic signs of the disturbed natural properties of the soil were revealed up to a depth of 40 cm in the profile based on macro- and micromorphometric parameters. The content of heavy metals (HM) – Pb, Zn, Hg, and Cu with an excess of standards was determined, and empirical HM – pH correlations were obtained by statistical clustering of the data array. The contributions of additional factors affecting the chemical element distribution in the soil layer were investigated. Significant soil contamination with sulfates and the possibility of implementing the ion-exchange of HM andfor element immobilization were revealed. It was shown that reactions with sulfates and the influence of pH, HM exchange processes involving mobile K and P can determine the nature of the described chemical element distribution in the multi-factor-contaminated technogenic soil. However, the effectiveness of such types of interaction is different for each metal and also depends on the quantitative ratio of substances and soil characteristics, even under a minor change in pH. Two-parameter correlations of HM distribution in sulfate-contaminated soils confirmed the different degrees of involvement of chemical elements in these types of interactions. The results obtained and the identified factors are of applied significance and can be used as the basis for geoecological differentiation of the contaminated soil, as well as for determining local geochemical fields in the technogenesis zone. Areas of advanced research are related to three-dimensional modeling for a more complete study of the cause-and-effect relationships of geochemical parameters.


This chapter considers closed three-membered metal cycles of one or several chemical elements surrounded by ligands connected to them. It has been proven that the widespread opinion in the literature about the formation of ligands by atoms in some cases of the semi-correct polyhedron of the anti-cube-octahedron is wrong. Geometrical analysis of the interpenetration of the coordinates of ligand atoms around each of the metal atoms of a closed chain showed that this leads to a different class of special three-dimensional irregular polyhedrons for different clusters. In all cases of homo-element and hetero-element closed metal chains, the cycle itself, located in a certain plane, creates a cross section of the cluster, dividing the cluster into two parts. Each of the parts of a cluster has dimension 4.


2003 ◽  
Vol 208 ◽  
pp. 413-414
Author(s):  
Daisuke Kawata ◽  
Brad K. Gibson

We investigate the chemo-dynamical evolution of elliptical galaxies, to understand the origin of the mass-dependence of photometric properties such as the colour-magnitude relation (CMR). Our three-dimensional TREE N-body/SPH numerical simulation takes into account both Type II and Type Ia supernovae and follows the evolution of the abundances of several chemical elements. We derive the photometric properties of the simulation end-products and compare them with the observed CMR.


2012 ◽  
Vol 24 (08) ◽  
pp. 1250021 ◽  
Author(s):  
JEAN-CLAUDE CUENIN

We present new results on the block-diagonalization of operators with spectral gaps, based on a method of Langer and Tretter, and apply them to Dirac operators on three-dimensional Euclidean space with unbounded potentials. For the Coulomb potential, we achieve an exact diagonalization up to nuclear charge Z = 124 (which covers all chemical elements) and prove the convergence of an approximate block-diagonalization up to Z = 62, thus considerably improving the upper bounds Z = 93 and Z = 51, respectively, established by Siedentop and Stockmeyer.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2576 ◽  
Author(s):  
Weronika Brzozowska ◽  
Myroslav Sprynskyy ◽  
Izabela Wojtczak ◽  
Przemysław Dąbek ◽  
Andrzej Witkowski ◽  
...  

Diatoms have an ability that is unique among the unicellular photoautotrophic organisms to synthesize an intricately ornamented siliceous (biosilica) exoskeleton with an ordered, hierarchical, three-dimensional structure on a micro- to nanoscale. The unique morphological, structural, mechanical, transport, photonic, and optoelectronic properties of diatomaceous biosilica make it a desirable material for modern technologies. This review presents a summary and discussion of published research on the metabolic insertion of chemical elements with specific functional activity into diatomaceous biosilica. Included in the review is research on innovation in methods of synthesis of a new generation of functional siliceous materials, where the synthesis process is “outsourced” to intelligent microorganisms, referred to here as microtechnologists, by providing them with appropriate conditions and reagents.


MRS Bulletin ◽  
2004 ◽  
Vol 29 (3) ◽  
pp. 157-165 ◽  
Author(s):  
Christian G. Schroer ◽  
Peter Cloetens ◽  
Mark Rivers ◽  
Anatoly Snigirev ◽  
Akahisa Takeuchi ◽  
...  

AbstractThe key strength of hard x-ray full-field microscopy is the large penetration depth of hard x-rays into matter, which allows one to image the interior of opaque objects. Combined with tomographic techniques, the three-dimensional inner structure of an object can be reconstructed without the need for difficult and destructive sample preparation. Projection microscopy and microtomography are now routinely available at synchrotron radiation sources. The resolution of these techniques is limited by that of the detector to 1 µm or slightly less. X-ray images and tomograms at higher spatial resolution can be obtained by x-ray optical magnification, for example, by using parabolic refractive x-ray lenses as a magnifying optic. Combining magnifying x-ray imaging with tomography allows one to reconstruct the three-dimensional structure of an object, such as a microprocessor chip, with resolution well below 1 µm. In x-ray scanning microscopy, the sample is scanned through a small-diameter beam. The great advantage of scanning microscopy is that x-ray analytical techniques such as fluorescence analysis, diffraction, and absorption spectroscopy can be used as contrast mechanisms in the microscope. In combination with tomography, fluorescence analysis makes it possible to reconstruct the distribution of different chemical elements inside an object (fluorescence microtomography), while combining absorption spectroscopy with tomography yields the distribution of different oxidation states of atomic species.


2021 ◽  
Vol 654 ◽  
pp. A167
Author(s):  
S. Ustamujic ◽  
S. Orlando ◽  
M. Miceli ◽  
F. Bocchino ◽  
M. Limongi ◽  
...  

Context. Luminous blue variable stars (LBVs) are massive evolved stars that suffer sporadic and violent mass-loss events. They have been proposed as the progenitors of some core-collapse supernovae (SNe), but this idea is still debated because of a lack of strong evidence. As supernova remnants (SNRs) can carry in their morphology the fingerprints of the progenitor stars as well as of the inhomogeneous circumstellar medium (CSM) sculpted by the progenitors, the study of SNRs from LBVs could help to place core-collapse SNe in context with the evolution of massive stars. Aims. We investigate the physical, chemical, and morphological properties of the remnants of SNe originating from LBVs in order to search for signatures in the ejecta distribution and morphology of the remnants that could reveal the nature of the progenitors. Methods. As a template of LBVs, we considered the LBV candidate Gal 026.47+0.02. We selected a grid of models that describe the evolution of a massive star with properties consistent with those of Gal 026.47+0.02 and its final fate as a core-collapse SN. We developed a three-dimensional hydrodynamic model that follows the post-explosion evolution of the ejecta from the breakout of the shock wave at the stellar surface to the interaction of the SNR with a CSM characterized by two dense nested toroidal shells, parametrized in agreement with multi-wavelength observations of Gal 026.47+0.02. Results. Our models show a strong interaction of the blast wave with the CSM which determines an important slowdown of the expansion of the ejecta in the equatorial plane where the two shells lay, determining a high degree of asymmetry in the remnant. After ≈10 000 yr of evolution, the ejecta show an elongated shape forming a broad jet-like structure caused by the interaction with the shells and oriented along the axis of the toroidal shells. Models with high explosion energy show Fe-rich internal ejecta distributions surrounded by an elongated Si-rich structure with a more diffuse O-rich ejecta all around. Models with low explosion energy instead show a more homogeneous distribution of chemical elements with a very low presence of Fe-group elements. Conclusions. The geometry and density distribution of the CSM where a LBV star goes SN are fundamental in determining the properties of the resulting SNR. For all the LBV-like progenitors explored here, we found that the remnants show a common morphology, namely elongated ejecta with an internal jet-like structure, which reflects the inhomogeneous and dense pre-SN CSM surrounding the star.


Sign in / Sign up

Export Citation Format

Share Document