scholarly journals Inverse Design of Ultralow Lattice Thermal Conductivity Materials via Materials Database Screening of Lone Pair Cation Coordination Environment

2020 ◽  
Vol 11 (14) ◽  
pp. 5577-5583
Author(s):  
Eric B. Isaacs ◽  
Grace M. Lu ◽  
Christopher Wolverton
2019 ◽  
Vol 30 (08) ◽  
pp. 1950045
Author(s):  
Xiao-Peng Liu ◽  
Zhen-Zhen Feng ◽  
Shu-Ping Guo ◽  
Yi Xia ◽  
Yongsheng Zhang

Skutterudites and half-Heusler compounds are well-studied promising thermoelectric (TE) materials due to favorable electrical properties. However, their intrinsic lattice thermal conductivities are so high that various methodologies have been developed to decrease them. Based on our first-principles phonon calculations, we find that thermodynamically stable Cu3VX4 ([Formula: see text], Se, Te) compounds exhibit good thermoelectric properties due to their special crystal structure (a Cu-V-X framework plus large void tunnels). The mechanically stable framework is the favorite pathway for the carrier conduction, which induces high electrical conductivity and power factor (comparative to those of filled-skutterudites and half-Heusler systems). Moreover, the void tunnels in the crystal structure result in unsaturated coordinations at the X sites and corresponding lone-pair electrons, which lower the lattice thermal conductivity. The calculated intrinsic lattice thermal conductivity of Cu3VX4 is much lower than those of the well-studied skutterudites and half-Heusler compounds. Thus, the maximum ZT values approach 1.6 (at 900[Formula: see text]K, [Formula: see text][Formula: see text][Formula: see text]) and 1.2 (at 1000[Formula: see text]K, [Formula: see text][Formula: see text][Formula: see text]) for the p- and n-type Cu3VTe4 compounds, respectively. Our work provides not only distinctive high-performance TE materials (Cu3VX4), but also a guideline for future promising thermoelectric discoveries.


2018 ◽  
Vol 9 (10) ◽  
pp. 2474-2483 ◽  
Author(s):  
Huimin Wang ◽  
Guangzhao Qin ◽  
Zhenzhen Qin ◽  
Guojian Li ◽  
Qiang Wang ◽  
...  

2017 ◽  
Vol 5 (7) ◽  
pp. 3249-3259 ◽  
Author(s):  
Baoli Du ◽  
Ruizhi Zhang ◽  
Kan Chen ◽  
Amit Mahajan ◽  
Mike J. Reece

The discovery and design of compounds with intrinsically low thermal conductivity, especially compounds with a special bonding nature and stable crystal structure, is a new direction to broaden the scope of potential thermoelectric (TE) materials.


2020 ◽  
Vol 49 (7) ◽  
pp. 2234-2243
Author(s):  
Minfeng Lü ◽  
Jianhua Jiang ◽  
Bei Zhu ◽  
Yuwei Zhao ◽  
Tianyu Zhu ◽  
...  

Co15F2(TeO3)14 features an extremely rare example of the Te(iv) lone pairs self-containment in pyritohedron-shaped [(TeO3)14]28− units, which allows Te atom to vibrate with large amplitude, leading to extremely low lattice thermal conductivity.


2013 ◽  
Vol 6 (2) ◽  
pp. 570-578 ◽  
Author(s):  
Michele D. Nielsen ◽  
Vidvuds Ozolins ◽  
Joseph P. Heremans

2020 ◽  
Vol 10 (5) ◽  
pp. 602-609
Author(s):  
Adil H. Awad

Introduction: A new approach for expressing the lattice thermal conductivity of diatomic nanoscale materials is developed. Methods: The lattice thermal conductivity of two samples of GaAs nanobeam at 4-100K is calculated on the basis of monatomic dispersion relation. Phonons are scattered by nanobeam boundaries, point defects and other phonons via normal and Umklapp processes. Methods: A comparative study of the results of the present analysis and those obtained using Callaway formula is performed. We clearly demonstrate the importance of the utilised scattering mechanisms in lattice thermal conductivity by addressing the separate role of the phonon scattering relaxation rate. The formulas derived from the correction term are also presented, and their difference from Callaway model is evident. Furthermore their percentage contribution is sufficiently small to be neglected in calculating lattice thermal conductivity. Conclusion: Our model is successfully used to correlate the predicted lattice thermal conductivity with that of the experimental observation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aastha Vasdev ◽  
Moinak Dutta ◽  
Shivam Mishra ◽  
Veerpal Kaur ◽  
Harleen Kaur ◽  
...  

AbstractA remarkable decrease in the lattice thermal conductivity and enhancement of thermoelectric figure of merit were recently observed in rock-salt cubic SnTe, when doped with germanium (Ge). Primarily, based on theoretical analysis, the decrease in lattice thermal conductivity was attributed to local ferroelectric fluctuations induced softening of the optical phonons which may strongly scatter the heat carrying acoustic phonons. Although the previous structural analysis indicated that the local ferroelectric transition temperature would be near room temperature in $${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$ Sn 0.7 Ge 0.3 Te , a direct evidence of local ferroelectricity remained elusive. Here we report a direct evidence of local nanoscale ferroelectric domains and their switching in $${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$ Sn 0.7 Ge 0.3 Te using piezoeresponse force microscopy(PFM) and switching spectroscopy over a range of temperatures near the room temperature. From temperature dependent (250–300 K) synchrotron X-ray pair distribution function (PDF) analysis, we show the presence of local off-centering distortion of Ge along the rhombohedral direction in global cubic $${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$ Sn 0.7 Ge 0.3 Te . The length scale of the $${\text {Ge}}^{2+}$$ Ge 2 + off-centering is 0.25–0.10 Å near the room temperatures (250–300 K). This local emphatic behaviour of cation is the cause for the observed local ferroelectric instability, thereby low lattice thermal conductivity in $${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$ Sn 0.7 Ge 0.3 Te .


Sign in / Sign up

Export Citation Format

Share Document