Threshold Ion Energies for Creating Defects in 2D Materials from First-Principles Calculations: Chemical Interactions Are Important

Author(s):  
Silvan Kretschmer ◽  
Sadegh Ghaderzadeh ◽  
Stefan Facsko ◽  
Arkady V. Krasheninnikov
2019 ◽  
Author(s):  
Michele Pizzocchero ◽  
Matteo Bonfanti ◽  
Rocco Martinazzo

The manuscript addresses the issue of the structural distortions occurring at multiple bonds between high main group elements, focusing on group 14. These distortions are known as trans-bending in silenes, disilenes and higher group analogues, and buckling in 2D materials likes silicene and germanene. A simple but correlated \sigma + \pi model is developed and validated with first-principles calculations, and used to explain the different behaviour of second- and higher- row elements.


Author(s):  
Bohayra Mortazavi ◽  
Masoud Shahrokhi ◽  
Xiaoying Zhuang ◽  
Alexander V. Shapeev ◽  
Timon Rabczuk

In the latest experimental advances in the field of two-dimensional (2D) materials, penta-PdPS and penta-PdPSe layered materials have been fabricated. In this work, we conduct first-principles calculations to explore the...


2020 ◽  
Vol 8 (38) ◽  
pp. 13286-13296
Author(s):  
Mahsa Abdollahi ◽  
Meysam Bagheri Tagani

Motivated by the intrinsic ferromagnetic properties and high Curie temperature of V-based Janus dichalcogenide monolayers as a new class of 2D materials, we investigated the structural, electronic and magnetic properties of the Janus VSeS monolayer by first-principles calculations.


Author(s):  
Hui Wang ◽  
Chen Pan ◽  
Sheng-Yan Wang ◽  
Hong Jiang ◽  
Yin-Chang Zhao ◽  
...  

Using first-principles calculations based on density functional perturbation theory, we demonstrate hydrogenation-induced superconductivity in monolayer TiB2H. Hydrogen adatoms destroy the Dirac state of monolayer TiB2 and monolayer TiB2H has a high vibration frequency. Monolayer TiB2H is a phonon-mediated superconductor. Monolayer TiB2H has a predicted [Formula: see text] of 8[Formula: see text]K, which further increases under external tensile strain. Thus, this study extends our understanding of superconductivity in two-dimensional (2D) materials and its potential applications.


Author(s):  
Heming Li ◽  
Xinxin Jiang ◽  
Xuhui Xu ◽  
Ge Xu ◽  
Dongmei Li ◽  
...  

Two-dimensional (2D) materials have attracted great interests in the field of optoelectronics in recent years due to their atomically thin structure and various electronic properties. Based on the first-principles calculations...


MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2799-2805
Author(s):  
Velappa Jayaraman Surya ◽  
Yuvaraj Sivalingam ◽  
Velappa Jayaraman Sowmya ◽  
Palani Elumalai ◽  
Gabriele Magna ◽  
...  

ABSTRACTMany heterogeneous and flat two dimensional (2D) materials with finite band gap have been researched for its suitability in exotic applications. For instance, zinc oxide (ZnO) with honey comb structure has optimum band gap that makes it eligible for opto-electronic applications. Recently, our research group have found that pyrene based tetratopic ligands (PTL) are suitable for functionalizing ZnO nanorods. In this study, neat and defective 2D ZnO layer is functionalized with different pyrene based ligands with various functional groups. First principles calculations are done and the degree of affinity of pyrene ligands towards neat and defective ZnO sheets is compared.


Author(s):  
Min Gao ◽  
Jun Hu

Decorating two-dimensional (2D) materials with transition-metal adatoms is an effective way to bring about new physical properties that are intriguing for applications in electronics and spintronics devices. Here, we systematically studied the coverage-dependent magnetic and electronic properties of graphene decorated by Co adatoms, based on first-principles calculations. We found that if the Co coverage is larger than 1/3[Formula: see text]ML, the Co atoms will aggregate to form a Co monolayer and then a van der Waals bilayer system between the Co monolayer and graphene forms. When the Co coverage is [Formula: see text][Formula: see text]ML, the Co adatom is spin-polarized with spin moment varying from 1.1 to 1.4[Formula: see text][Formula: see text]. The [Formula: see text] and [Formula: see text] orbitals of Co hybridize significantly with the [Formula: see text] bands of graphene, which generates a series of new bands in the energy range from [Formula: see text][Formula: see text]eV to 1[Formula: see text]eV with respect to the Dirac point of graphene. In most cases, the new bands near the Fermi level lead to topological states characterized by the quantum anomalous Hall effect.


RSC Advances ◽  
2017 ◽  
Vol 7 (61) ◽  
pp. 38410-38414 ◽  
Author(s):  
Fanhao Jia ◽  
Yuting Qi ◽  
Shunbo Hu ◽  
Tao Hu ◽  
Musen Li ◽  
...  

Using crystal structure prediction and first-principles calculations, we investigated new phases of BeB2 monolayers and discussed their structural, electronic and strain effect properties of such boron-based 2D materials.


1990 ◽  
Vol 213 ◽  
Author(s):  
J.D. Becker ◽  
J.M. Sanchez ◽  
J.K. Tien

ABSTRACTTotal energy electronic structure calculations are performed for the elements and selected binary ordered compounds of the ternary system Nb-Ru-Zr. These calculations provide binding energies, atomic volumes, bulk moduli, Debye temperatures, and Grüneiesen constants for the selected structures and compounds. Volume dependent pair and many-body chemical interactions are also obtained from the total energy results which, in turn, are used to study partially ordered alloys at finite temperatures. The stability of all the binary intermetallic compounds experimentally observed at low temperatures is correctly predicted by the first-principles calculations. The solid state portion of the Nb-Ru binary phase diagram is calculated using the chemical interactions obtained from the total energy calculations, a Debye-Grüneisen model for the vibrational free energy and the cluster variation method (CVM) for the configurational entropy with a local volume relaxation scheme. The calculations reproduce the experimentally observed ordering temperature of the NbRu3 intermetallic to within 2%.


Sign in / Sign up

Export Citation Format

Share Document