Differential Permeability of Proton Isotopes through Graphene and Graphene Analogue Monolayer

2016 ◽  
Vol 7 (17) ◽  
pp. 3395-3400 ◽  
Author(s):  
Qiuju Zhang ◽  
Minggang Ju ◽  
Liang Chen ◽  
Xiao Cheng Zeng
2020 ◽  
Vol 17 (1) ◽  
pp. 2-22 ◽  
Author(s):  
Abdel-Baset Halim

:Cell-based assays are an important part of the drug discovery process and clinical research. One of the main hurdles is to design sufficiently robust assays with adequate signal to noise parameters while maintaining the inherent physiology of the cells and not interfering with the pharmacology of target being investigated.:A plethora of assays that assess cell viability (or cell heath in general) are commercially available and can be classified under different categories according to their concepts and principle of reactions. The assays are valuable tools, however, suffer from a large number of limitations. Some of these limitations can be procedural or operational, but others can be critical as those related to a poor concept or the lack of proof of concept of an assay, e.g. those relying on differential permeability of dyes in-and-out of viable versus compromised cell membranes. While the assays can differentiate between dead and live cells, most, if not all, of them can just assess the relative performance of cells rather than providing a clear distinction between healthy and dying cells. The possible impact of relatively high molecular weight dyes, used in most of the assay, on cell viability has not been addressed. More innovative assays are needed, and until better alternatives are developed, setup of current cell-based studies and data interpretation should be made with the limitations in mind. Negative and positive control should be considered whenever feasible. Also, researchers should use more than one orthogonal method for better assessment of cell health.


1986 ◽  
Vol 85 ◽  
Author(s):  
A. Ambari ◽  
B. Gauthier-Manuel ◽  
E. Guyon

ABSTRACTKnowledge of the evolution of the permeability of cement throughout the course of hydration provides a suitable means to evaluate the evolution of the pore structure. The main difficulty is to measure permeability without disturbing the tenuous structure of the material at the beginning of the hydration. We have developed a differential permeability technique in which the applied flow is sufficiently weak that the structure of the medium is not disturbed. As an example of application of this technique we present measurement of the evolution of the critical permeability during a sol-gel transition.


1998 ◽  
Vol 31 (3) ◽  
pp. 287-290
Author(s):  
L Lanotte ◽  
V Iannotti ◽  
L Maritato ◽  
C Attanasio ◽  
L V Mercaldo

2000 ◽  
Vol 644 ◽  
Author(s):  
Martin Hollmark ◽  
Victor Tkatch ◽  
Sergey Khartsev ◽  
Alex Grishin

AbstractA glassy structure was formed in the Fe40Co40P14B6 alloy by melt-spinning technique. The as-quenched 2-8 mm wide and 15-30 [.proportional]m thick ribbons exhibit good soft magnetic properties: the saturation magnetization of 1.45 T, the coercive force of 4 A/m and maximum differential permeability at 60 Hz of about 90000. The FeCo-based glass crystallizes via eutectic reaction into a mixture of an austenite and a b.c. tetragonal Fe3P-like phase similar to that of the well-known Fe40Ni40P14B6metallic glass, but at temperatures about 60 K higher than the latter. The evaluation of the thermodynamic and kinetic parameters of crystallization process brought us to the conclusion that the improved thermal stability of the Fe40Co40P14B6 glass is caused by the enhanced interfacial nucleus-glass energy.


Sign in / Sign up

Export Citation Format

Share Document