KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides

2018 ◽  
Vol 17 (9) ◽  
pp. 3214-3222 ◽  
Author(s):  
Poonam Pandey ◽  
Vinal Patel ◽  
Nithin V. George ◽  
Sairam S. Mallajosyula
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Hong Yang ◽  
Lipeng Gao ◽  
Guohui Li

Aiming at the chaotic characteristics of underwater acoustic signal, a prediction model of grey wolf-optimized kernel extreme learning machine (OKELM) based on MVMD is proposed in this paper for short-term prediction of underwater acoustic signals. To solve the problem of K value selection in variational mode decomposition, a new K value selection method MVMD is proposed from the perspective of mutual information, which avoids the blindness of variational mode decomposition (VMD) in the preset modal number. Based on the prediction model of kernel extreme learning machine (KELM), this paper uses grey wolf optimization (GWO) algorithm to optimize and select its regularization parameters and kernel parameters and proposes an optimized kernel extreme learning machine OKELM. To further improve the prediction performance of the model, combined with MVMD, an underwater acoustic signal prediction model based on MVMD-OKELM is established. MVMD-OKELM prediction model is applied to Mackey–Glass chaotic time series prediction and underwater acoustic signal prediction and is compared with ARIMA, EMD-OKELM, and other prediction models. The experimental results show that the proposed MVMD-OKELM prediction model has a higher prediction accuracy and can be effectively applied to the prediction of underwater acoustic signal series.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1540
Author(s):  
Pengcheng Zhao ◽  
Ying Chen ◽  
Zhibiao Zhao

Aiming at the difficulty in real-time measuring and the long offline measurement cycle for the content of cement clinker free lime (fCaO), it is very important to build an online prediction model for fCaO content. In this work, on the basis of Cholesky factorization, the online sequential multiple kernel extreme learning machine algorithm (COS-MKELM) is proposed. The LDLT form Cholesky factorization of the matrix is introduced to avoid the large operation amount of inverse matrix calculation. In addition, the stored initial information is utilized to realize online model identification. Then, three regression datasets are used to test the performance of the COS-MKELM algorithm. Finally, an online prediction model for fCaO content is built based on COS-MKELM. Experimental results demonstrate that the fCaO content model improves the performance in terms of learning efficiency, regression accuracy, and generalization ability. In addition, the online prediction model can be corrected in real-time when the production conditions of cement clinker change.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1645
Author(s):  
Haoran Zhao ◽  
Sen Guo

The accurate prediction of electricity-heat-cooling-gas loads on the demand side in the integrated energy system (IES) can provide significant reference for multiple energy planning and stable operation of the IES. This paper combines the multi-task learning (MTL) method, the Bootstrap method, the improved Salp Swarm Algorithm (ISSA) and the multi-kernel extreme learning machine (MKELM) method to establish the uncertain interval prediction model of electricity-heat-cooling-gas loads. The ISSA introduces the dynamic inertia weight and chaotic local searching mechanism into the basic SSA to improve the searching speed and avoid falling into local optimum. The MKELM model is established by combining the RBF kernel function and the Poly kernel function to integrate the superior learning ability and generalization ability of the two functions. Based on the established model, weather, calendar information, social–economic factors, and historical load are selected as the input variables. Through empirical analysis and comparison discussion, we can obtain: (1) the prediction results of workday are better than those on holiday. (2) The Bootstrap-ISSA-MKELM based on the MTL method has superior performance than that based on the STL method. (3) Through comparing discussion, we discover the established uncertain interval prediction model has the superior performance in combined electricity-heat-cooling-gas loads prediction.


Author(s):  
Renxiong Liu

Objective: Lithium-ion batteries are important components used in electric automobiles (EVs), fuel cell EVs and other hybrid EVs. Therefore, it is greatly important to discover its remaining useful life (RUL). Methods: In this paper, a battery RUL prediction approach using multiple kernel extreme learning machine (MKELM) is presented. The MKELM’s kernel keeps diversified by consisting multiple kernel functions including Gaussian kernel function, Polynomial kernel function and Sigmoid kernel function, and every kernel function’s weight and parameter are optimized through differential evolution (DE) algorithm. Results : Battery capacity data measured from NASA Ames Prognostics Center are used to demonstrate the prediction procedure of the proposed approach, and the MKELM is compared with other commonly used prediction methods in terms of absolute error, relative accuracy and mean square error. Conclusion: The prediction results prove that the MKELM approach can accurately predict the battery RUL. Furthermore, a compare experiment is executed to validate that the MKELM method is better than other prediction methods in terms of prediction accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2599
Author(s):  
Zhenbao Li ◽  
Wanlu Jiang ◽  
Sheng Zhang ◽  
Yu Sun ◽  
Shuqing Zhang

To address the problem that the faults in axial piston pumps are complex and difficult to effectively diagnose, an integrated hydraulic pump fault diagnosis method based on the modified ensemble empirical mode decomposition (MEEMD), autoregressive (AR) spectrum energy, and wavelet kernel extreme learning machine (WKELM) methods is presented in this paper. First, the non-linear and non-stationary hydraulic pump vibration signals are decomposed into several intrinsic mode function (IMF) components by the MEEMD method. Next, AR spectrum analysis is performed for each IMF component, in order to extract the AR spectrum energy of each component as fault characteristics. Then, a hydraulic pump fault diagnosis model based on WKELM is built, in order to extract the features and diagnose faults of hydraulic pump vibration signals, for which the recognition accuracy reached 100%. Finally, the fault diagnosis effect of the hydraulic pump fault diagnosis method proposed in this paper is compared with BP neural network, support vector machine (SVM), and extreme learning machine (ELM) methods. The hydraulic pump fault diagnosis method presented in this paper can diagnose faults of single slipper wear, single slipper loosing and center spring wear type with 100% accuracy, and the fault diagnosis time is only 0.002 s. The results demonstrate that the integrated hydraulic pump fault diagnosis method based on MEEMD, AR spectrum, and WKELM methods has higher fault recognition accuracy and faster speed than existing alternatives.


Sign in / Sign up

Export Citation Format

Share Document