Probing Biological Molecule Orientation and Polymer Surface Structure at the Polymer/Solution Interface In Situ

Langmuir ◽  
2020 ◽  
Vol 36 (26) ◽  
pp. 7681-7690
Author(s):  
Ting Lin ◽  
Wen Guo ◽  
Ruiying Guo ◽  
Zhan Chen
Author(s):  
O.L. Krivanek ◽  
G.J. Wood

Electron microscopy at 0.2nm point-to-point resolution, 10-10 torr specimei region vacuum and facilities for in-situ specimen cleaning presents intere; ing possibilities for surface structure determination. Three methods for examining the surfaces are available: reflection (REM), transmission (TEM) and profile imaging. Profile imaging is particularly useful because it giv good resolution perpendicular as well as parallel to the surface, and can therefore be used to determine the relationship between the surface and the bulk structure.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Mikkel Herzberg ◽  
Anders Støttrup Larsen ◽  
Tue Hassenkam ◽  
Anders Østergaard Madsen ◽  
Jukka Rantanen

Solvents can dramatically affect molecular crystals. Obtaining favorable properties for these crystals requires rational design based on molecular level understanding of the solid-solution interface. Here we show how atomic force...


2004 ◽  
Vol 76 (1) ◽  
pp. 115-122 ◽  
Author(s):  
K. Ichikawa ◽  
S. Sato ◽  
N. Shimomura

The metastable surface structure and dynamics of water molecules, cations, and anions at the interface between KBr(001) and water have been demonstrated from the images in situ observed in atomic resolution using atomic force microscopy. The vertical motion of potassium ions, which means their own transfer from the equilibrium sites to the upper height right on the underlying bromide ions, has been observed at the interface. They are used to be located in some steady state stabilized by their interaction with water molecules in the double atomic layer at the interface. The observed water molecules bridge two bromide ions by hydrogen bond; the water molecules are sandwiched by the potassium ions and vice versa.


2021 ◽  
Author(s):  
Tormod Skauge ◽  
Kenneth Sorbie ◽  
Ali Al-Sumaiti ◽  
Shehadeh Masalmeh ◽  
Arne Skauge

Abstract A large, untapped EOR potential may be extracted by extending polymer flooding to carbonate reservoirs. However, several challenges are encountered in carbonates due to generally more heterogeneous rock and lower permeability. In addition, high salinity may lead to high polymer retention. Here we show how in-situ viscosity varies with permeability and heterogeneity in carbonate rock from analysis of core flood results and combined with review of data available in literature. In-situ rheology experiments were performed on both carbonate outcrop and reservoir cores with a range in permeabilities. The polymer used was a high ATBS content polyacrylamide (SAV10) which tolerates high temperature and high salinity. Some cores were aged with crude oil to generate non-water-wet, reservoir representative wettability conditions. These results are compared to a compilation of literature data on in-situ rheology for predominantly synthetic polymers in various carbonate rock. A systematic approach was utilized to derive correlations for resistance factor, permeability reduction and in-situ viscosity as a function of rock and polymer properties. Polymer flooding is applied to improve sweep efficiency that may occur due to reservoir heterogeneities (large permeability contrasts, anisotropy, thief zones) or adverse mobility ratio (high mobility contrast oil-brine). In flooding design, the viscosity of the polymer solution in the reservoir, the in-situ viscosity, is an essential parameter as this is tuned to correct the mobility difference and to improve sweep. The viscosity is estimated from rheometer/viscometer measurements or, better, measured in laboratory core flood experiments. However, upscaling core flood experiments to field is challenging. Core flood experiments measure differential pressure, which is the basis for the resistance factor, RF, that describes the increased resistance to flow for polymer relative to brine. However, the pressure is also influenced by several other factors such as the permeability reduction caused by adsorption and retention of polymer in the rock, the tortuosity of the rock and the viscosity of the flowing polymer solution. Deduction of in-situ viscosity is straight forward using Darcy's law but the capillary bundle model that is the basis for applying this law fails for non-Newtonian fluids. This is particularly evident in carbonate rock. Interpretation of in-situ rheology experiments can therefore be misleading if the wrong assumptions are made. Polymer flooding in carbonate reservoirs has a large potential for increased utilization of petroleum reserves at a reduced CO2 footprint. In this paper we apply learnings from an extensive core flood program for a polymer flood project in the UAE and combine this with reported literature data to generate a basis for interpretation of in-situ rheology experiments in carbonates. Most importantly, we suggest a methodology to screen experiments and select data to be used as basis for modelling polymer flooding. This improves polymer flood design, optimize the polymer consumption, and thereby improve project economy and energy efficiency.


Author(s):  
Alexander A. Fedorets ◽  
Edward Bormashenko ◽  
Leonid A. Dombrovsky ◽  
Michael Nosonovsky

Condensed microdroplets play a prominent role in living nature, participating in various phenomena, from water harvesting by plants and insects to microorganism migration in bioaerosols. Microdroplets may also form regular self-organized patterns, such as the hexagonally ordered breath figures on a solid surface or levitating monolayer droplet clusters over a locally heated water layer. While the breath figures have been studied since the nineteenth century, they have found a recent application in polymer surface micropatterning (e.g. for superhydrophobicity). Droplet clusters were discovered in 2004, and they are the subject of active research. Methods to control and stabilize droplet clusters make them suitable for the in situ analysis of bioaerosols. Studying life in bioaerosols is important for understanding microorganism origins and migration; however, direct observation with traditional methods has not been possible. We report preliminary results on direct in situ observation of microorganisms in droplet clusters. We also present a newly observed transition between the hexagonally ordered and chain-like states of a droplet cluster. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.


Sign in / Sign up

Export Citation Format

Share Document