scholarly journals Correction to “Influence of the Hollowness and Size Distribution on the Magnetic Properties of Fe3O4 Nanospheres”

Langmuir ◽  
2022 ◽  
Author(s):  
Yang Shi ◽  
Zhenhua Han ◽  
Jun Yang ◽  
Qingnan Meng
2011 ◽  
Vol 287-290 ◽  
pp. 494-498 ◽  
Author(s):  
Qiong Zhou ◽  
Yin Chun Hu ◽  
Yu Liang Ma ◽  
Yong Ji Weng

Magnetic nickel nanoparticles are prepared by NaBH4reducing agent in AOT reverse microemulsion, the influence of water content on the morphology and magnetic properties of nickel nanoparticles are investigated by TEM study, size distribution, XRD characterization and magnetization curves. The results show that spherical and polydispered particles are obtained in microemulsion. The dimension and polydispersity of particles increased with the increasing of water content. Magnetization curves clearly indicate a ferromagnetic behavior with high coercivity values. At water content of W0=41.7, the product has a high saturated magnetization 70.68 emu/g with its residual magnetizations 28.02 emu/g, higher than the sample obtained at water content of W0=13.9.


AIP Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 056422 ◽  
Author(s):  
Huanhuan Xu ◽  
Qiong Wu ◽  
Ming Yue ◽  
Chenglin Li ◽  
Hongjian Li ◽  
...  

2014 ◽  
Vol 633-634 ◽  
pp. 451-454
Author(s):  
Quan Xiao Liu ◽  
Dan Xi Li

SEM and Automated Surface Area & Pore Size Analyzer were used to characterize surface morphology and specific surface area and the pore size distribution of fibers. The results showed that specific surface area and pore size distribution increase after ultrasonication. The ash content of the composites of ultrasonic treated fiber is larger than the untreated fiber, and the magnetic properties show a good superparamagnetic behavior.


Author(s):  
K.H. Ang ◽  
I. Alexandrou ◽  
N.D. Mathur ◽  
R. Lacerda ◽  
I.Y.Y. Bu ◽  
...  

An electric arc discharge in de-ionised water between a solid graphite cathode and an anode made by compressing Ni and C containing powders in a mass ratio of Ni:C = 7:3 was used here to prepare carbon encapsulated Ni nanoparticles in the form of powder suspended in water. The morphology of the produced material was analysed using high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The magnetic properties of the samples were determined using a Princeton vibrating sample magnetometer (VSM). Collection of the powder produced from different depths in the water container has proved to be an effective method for obtaining samples with narrow particle size distribution. Further material purification by dry NH4 plasma etching was used to remove the amorphous carbon content of the samples. XRD and HRTEM analysis showed that the material synthesized is fcc Ni particles with mean particle size ranging from 14 to 30 nm encapsulated in 2 to 5 graphitic cages. The data suggests that the process reported has the ability to mass-produce carbon encapsulated ferromagnetic nanoparticles with desired particle size distribution, and hence with controlled size-dependent magnetic properties.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hyeon–Seon Ahn ◽  
Jaesoo Lim ◽  
Sung Won Kim

The sensitivity of magnetic properties, which characterize the mineralogy, concentration, and grain size distribution of magnetic minerals, to environmental processes may provide useful information on paleoenvironmental changes in estuarine environments. Magnetic property studies of estuaries are less common than other environments and, due to the west coast of South Korea having an abundance of estuaries, it provides a good place to study these processes. In this study, we analyzed a variety of magnetic properties based on magnetic susceptibility, hysteresis parameters, progressive acquisition of isothermal remanent magnetization and first-order reversal curve data from a Holocene muddy sediment core recovered from the Yeongsan Estuary on the west coast of South Korea. We examined diagenetic effects on magnetic properties and tested their availability as proxies of paleoenvironmental change. The presence of generally low magnetic susceptibility, ubiquitous greigite-like authigenic magnetic component, and very fine magnetic particle occurrence suggested that the analyzed sediments had undergone considerable early diagenetic alteration. Electron microscopic observations of magnetic minerals support this suggestion. Our results confirm that the use of initial bulk susceptibility as a stand-alone environmental change proxy is not recommended unless it is supported by additional magnetic analyses. We recognized the existence of ferromagnetic-based variabilities related to something besides the adverse diagenetic effects, and have examined possible relationships with sea-level and major climate changes during the Holocene. The most remarkable finding of this study is the two distinct intervals with high values in magnetic coercivity (Bc), coercivity of remanence (Bcr), and ratio of remanent saturation moment to saturation moment (Mrs/Ms) that were well coincident with the respective abrupt decelerations in the rate of sea-level rise occurred at around 8.2 and 7 thousand years ago. It is then inferred that such condition with abrupt drop in sea-level rise rate would be favorable for the abrupt modification of grain size distribution toward more single-domain-like content. We modestly propose consideration of the Bc, Bcr, and Mrs/Ms variability as a potential indicator for the initiation/occurrence of sea-level stillstand/slowstand or highstand during the Holocence, at least at estuarine environments in and around the studied area.


Sign in / Sign up

Export Citation Format

Share Document