Spontaneous Spreading of a Droplet: The Role of Solid Continuity and Advancing Contact Angle

Langmuir ◽  
2018 ◽  
Vol 34 (17) ◽  
pp. 4945-4951 ◽  
Author(s):  
Youhua Jiang ◽  
Yujin Sun ◽  
Jaroslaw W. Drelich ◽  
Chang-Hwan Choi
Author(s):  
Rami Benkreif ◽  
Fatima Zohra Brahmia ◽  
Csilla Csiha

AbstractSurface tension of solid wood surfaces affects the wettability and thus the adhesion of various adhesives and wood coatings. By measuring the contact angle of the wood, the surface tension can be calculated based on the Young-Dupré equation. Several publications have reported on contact angle measured with different test liquids, under different conditions. Results can only be compared if the test conditions are similar. While the roles of the drop volume, image shooting time etc., are widely recognized, the role of the wood surface moisture content (MC) is not evaluated in detail. In this study, the effect of wood moisture content on contact angle values, measured with distilled water and diiodomethane, on sanded birch (Betula pendula) surfaces was investigated, in order to find the relationship between them. With increasing MC from approximately 6% to 30%, increasing contact angle (decreasing surface tension) values were measured according to a logarithmic function. The function makes possible the calculation of contact angles that correspond to different MCs.


2021 ◽  
Vol 303 ◽  
pp. 01001
Author(s):  
Yu Haiyang ◽  
Ji Wenjuan ◽  
Luo Cheng ◽  
Lu Junkai ◽  
Yan Fei ◽  
...  

In order to give full play to the role of imbibition of capillary force and enhance oil recovery of ultralow permeability sandstone reservoir after hydraulic fracturing, the mixed water fracture technology based on functional slick water is described and successfully applied to several wells in oilfield. The core of the technology is determination of influence factors of imbibition oil recovery, the development of new functional slick water system and optimization of volume fracturing parameters. The imbibition results show that it is significant effect of interfacial tension, wetting on imbibition oil recovery. The interfacial tension decreases by an order of magnitude, the imbibition oil recovery reduces by more than 10%. The imbibition oil recovery increases with the contact angle decreasing. The emulsifying ability has no obvious effect on imbibition oil recovery. The functional slick water system considering imbibition is developed based on the solution rheology and polymer chemistry. The system has introduced the active group and temperature resistant group into the polymer molecules. The molecular weight is controlled in 1.5 million. The viscosity is greater than 2mPa·s after shearing 2h under 170s-1 and 100℃. The interfacial tension could decrease to 10-2mN/m. The contact angle decreased from 58° to 22° and the core damage rate is less than 12%. The imbibition oil recovery could reach to 43%. The fracturing process includes slick water stage and linear gel stage. 10% 100 mesh ceramists and 8% temporary plugging agents are carried into the formation by functional slick water. 40-70 mesh ceramists are carried by linear gel. The liquid volume ratio is about 4:1 and the displacement is controlled at 10-12m3/min. The sand content and fracturing fluid volumes of single stage are 80m3 and 2500 m3 respectively. Compared with conventional fracturing, due to imbibition oil recovery, there is only 25% of the fracturing fluid flowback rate when the crude oil flew out. When the oil well is in normal production, about 50% of the fracturing fluid is not returned. It is useful to maintain the formation energy and slow down the production decline. The average cumulative production of vertical wells is greater than 2800t, and the effective period is more than 2 years. This technology overcoming the problem of high horizontal stress difference and lack of natural fracture has been successfully applied in Jidong Oilfield ultralow permeability reservoir. The successful application of this technology not only helps to promote the effective use of ultralow permeability reservoirs, but also helps to further clarify the role of imbibition recovery, energy storage and oil-water replacement mechanism.


2009 ◽  
Vol 23 (15) ◽  
pp. 1917-1923 ◽  
Author(s):  
Evan A. Thomas ◽  
Darwin H. Poritz ◽  
Dean L. Muirhead

Author(s):  
Yesenia Gómez Taborda ◽  
Maryory Gómez Botero ◽  
Juan Guillermo Castaño-González ◽  
Angela Bermúdez-Castañeda

During their service life, modular interfaces experience tribological, and corrosion phenomena that lead to deterioration, which in turn can cause a revision procedure to remove the failed prosthesis. To achieve a clearer understanding of the surface performance of those biomedical alloys and the role of the surface properties in the mechanical and chemical performance, samples were taken from retrieval implants made of Ti6Al4V and Co28Cr6Mo alloys. Polarization resistance and pin-on-disk tests were performed on these samples. Physical properties such as contact angle, roughness, microhardness, and Young’s modulus were determined. A correlation between surface energy and evolution of the tribological contact was observed for both biomedical alloys. In tribocorrosion tests, titanium particles seem to remain in the surface, unlike what is observed in CoCr alloys. These metallic or oxidized particles could cause necrosis or adverse tissue reactions.


1977 ◽  
Vol 16 (1) ◽  
pp. 91-96 ◽  
Author(s):  
J. Van Brakel ◽  
P.M. Heertjes

2015 ◽  
Vol 143 (13) ◽  
pp. 134705 ◽  
Author(s):  
F. Bottiglione ◽  
G. Carbone ◽  
B. N. J. Persson

Author(s):  
Leonard Laroque ◽  
Abhishek Jain ◽  
Tie Wang ◽  
Karthik Chinnathambi ◽  
Ganapathiraman Ramanath ◽  
...  

Application of voltage across a liquid-dielectric interface resulting in the change of fluid contact angle is known as electrowetting on dielectric (EWOD) effect [1]. EWOD actuation is one of the most preferred techniques to move liquid at microscale due to relatively low voltages, low currents and power consumption requirements, and the absence of electrolysis. Our recent work has shown that nanofluids containing semiconductor nanoparticles exhibit a very strong EWOD effect [2, 3]. In particular, in the tested voltage range of 0 to 60 V, nanofluids loaded with molecularly-capped bismuth telluride nanoparticles show enhanced stability and increased actuation range of contact angle change. Developing a fundamental understanding of the role of nanostructure inclusions in controlling and potentially enhancing the EWOD effect would pave the way for the efficient use of EWOD with nanofluids in a wide range or microfluidic applications. Here we extend the studies on the EWOD behavior of nanofluids, to a system containing noble metal nano particles. In this abstract we report the preliminary results of the electro-wetting studies on nanofluids containing silver nano particles.


Sign in / Sign up

Export Citation Format

Share Document