Multistage Structural Ordering and Crystallization of Poly(trimethylene terephthalate) during Sub-Tg Stretching: Synergetic Effects of Chain Orientation and Conformational Transition

2021 ◽  
Author(s):  
Jian Zhou ◽  
Shanshan Xu ◽  
Ying Zheng ◽  
Chengtao Yu ◽  
Guorong Shan ◽  
...  
2017 ◽  
Author(s):  
Jana Shen ◽  
Zhi Yue ◽  
Helen Zgurskaya ◽  
Wei Chen

AcrB is the inner-membrane transporter of E. coli AcrAB-TolC tripartite efflux complex, which plays a major role in the intrinsic resistance to clinically important antibiotics. AcrB pumps a wide range of toxic substrates by utilizing the proton gradient between periplasm and cytoplasm. Crystal structures of AcrB revealed three distinct conformational states of the transport cycle, substrate access, binding and extrusion, or loose (L), tight (T) and open (O) states. However, the specific residue(s) responsible for proton binding/release and the mechanism of proton-coupled conformational cycling remain controversial. Here we use the newly developed membrane hybrid-solvent continuous constant pH molecular dynamics technique to explore the protonation states and conformational dynamics of the transmembrane domain of AcrB. Simulations show that both Asp407 and Asp408 are deprotonated in the L/T states, while only Asp408 is protonated in the O state. Remarkably, release of a proton from Asp408 in the O state results in large conformational changes, such as the lateral and vertical movement of transmembrane helices as well as the salt-bridge formation between Asp408 and Lys940 and other sidechain rearrangements among essential residues.Consistent with the crystallographic differences between the O and L protomers, simulations offer dynamic details of how proton release drives the O-to-L transition in AcrB and address the controversy regarding the proton/drug stoichiometry. This work offers a significant step towards characterizing the complete cycle of proton-coupled drug transport in AcrB and further validates the membrane hybrid-solvent CpHMD technique for studies of proton-coupled transmembrane proteins which are currently poorly understood. <p><br></p>


2006 ◽  
Vol 172 (7) ◽  
pp. 1009-1022 ◽  
Author(s):  
Jawdat Al-Bassam ◽  
Mark van Breugel ◽  
Stephen C. Harrison ◽  
Anthony Hyman

Stu2p from budding yeast belongs to the conserved Dis1/XMAP215 family of microtubule-associated proteins (MAPs). The common feature of proteins in this family is the presence of HEAT repeat–containing TOG domains near the NH2 terminus. We have investigated the functions of the two TOG domains of Stu2p in vivo and in vitro. Our data suggest that Stu2p regulates microtubule dynamics through two separate activities. First, Stu2p binds to a single free tubulin heterodimer through its first TOG domain. A large conformational transition in homodimeric Stu2p from an open structure to a closed one accompanies the capture of a single free tubulin heterodimer. Second, Stu2p has the capacity to associate directly with microtubule ends, at least in part, through its second TOG domain. These two properties lead to the stabilization of microtubules in vivo, perhaps by the loading of tubulin dimers at microtubule ends. We suggest that this mechanism of microtubule regulation is a conserved feature of the Dis1/XMAP215 family of MAPs.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 266
Author(s):  
Nataša Žuržul ◽  
Bjørn Torger Stokke

In the present paper, we describe a potassium sensor based on DNA-aptamer functionalized hydrogel, that is capable of continuous label-free potassium ion (K+) monitoring with potential for in situ application. A hydrogel attached to the end of an optical fiber is designed with di-oligonucleotides grafted to the polymer network that may serve as network junctions in addition to the covalent crosslinks. Specific affinity toward K+ is based on exploiting a particular aptamer that exhibits conformational transition from single-stranded DNA to G-quadruplex formed by the di-oligonucleotide in the presence of K+. Integration of this aptamer into the hydrogel transforms the K+ specific conformational transition to a K+ concentration dependent deswelling of the hydrogel. High-resolution interferometry monitors changes in extent of swelling at 1 Hz and 2 nm resolution for the hydrogel matrix of 50 µm. The developed hydrogel-based biosensor displayed high selectivity for K+ ions in the concentration range up to 10 mM, in the presence of physiological concentrations of Na+. Additionally, the concentration dependent and selective K+ detection demonstrated in the artificial blood buffer environment, both at room and physiological temperatures, suggests substantial potential for practical applications such as monitoring of potassium ion concentration in blood levels in intensive care medicine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryo Saga ◽  
Yusuke Matsuya ◽  
Rei Takahashi ◽  
Kazuki Hasegawa ◽  
Hiroyuki Date ◽  
...  

AbstractHyaluronan synthesis inhibitor 4-methylumbelliferone (4-MU) is a candidate of radiosensitizers which enables both anti-tumour and anti-metastasis effects in X-ray therapy. The curative effects under such 4-MU administration have been investigated in vitro; however, the radiosensitizing mechanisms remain unclear. Here, we investigated the radiosensitizing effects under 4-MU treatment from cell experiments and model estimations. We generated experimental surviving fractions of human fibrosarcoma cells (HT1080) after 4-MU treatment combined with X-ray irradiation. Meanwhilst, we also modelled the pharmacological effects of 4-MU treatment and theoretically analyzed the synergetic effects between 4-MU treatment and X-ray irradiation. The results show that the enhancement of cell killing by 4-MU treatment is the greatest in the intermediate dose range of around 4 Gy, which can be reproduced by considering intercellular communication (so called non-targeted effects) through the model analysis. As supposed to be the involvement of intercellular communication in radiosensitization, the oxidative stress level associated with reactive oxygen species (ROS), which leads to DNA damage induction, is significantly higher by the combination of 4-MU treatment and irradiation than only by X-ray irradiation, and the radiosensitization by 4-MU can be suppressed by the ROS inhibitors. These findings suggest that the synergetic effects between 4-MU treatment and irradiation are predominantly attributed to intercellular communication and provide more efficient tumour control than conventional X-ray therapy.


Sign in / Sign up

Export Citation Format

Share Document