Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin

Nano Letters ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 2054-2059 ◽  
Author(s):  
Luca Nela ◽  
Jianshi Tang ◽  
Qing Cao ◽  
George Tulevski ◽  
Shu-Jen Han
2006 ◽  
Vol 920 ◽  
Author(s):  
Zhang Hui ◽  
Tao Xiao Ming ◽  
Yu Tong Xi ◽  
Li Xin Sheng

AbstractThis paper presents an approach for decoding the pressure information exerted over a piece of fabric by means of resistive sensing. The proposed sensor includes a distributed resistive grids constructed by two systems of orthogonally contacted electrical conductive yarns, with no external sensing element to be attached on the fabric. Since the conductive yarns serve as the sensing and wiring elements simultaneously, this design simplifies the fabrication process, reduces the cost and makes the production of large area flexible pressure sensor possible. The location of the pressure applied on the fabric can be identified by detecting the position where the change of the resistances occurs between two embroidered yarns. Meanwhile, the magnitude of the pressure can be acquired by measuring the variations of the resistance. In order to eliminate the “crosstalk” effect between adjoining fibers, the yarns were separately wired on the fabric surface.


Nano Research ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 4356-4367 ◽  
Author(s):  
Guodong Dong ◽  
Jie Zhao ◽  
Lijun Shen ◽  
Jiye Xia ◽  
Hu Meng ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1499 ◽  
Author(s):  
Young Jung ◽  
Kyung Kuk Jung ◽  
Dong Hwan Kim ◽  
Dong Hwa Kwak ◽  
Jong Soo Ko

We developed a simple, low-cost process to fabricate a flexible pressure sensor with linear sensitivity by using a porous carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite structure (CPCS). The working principle of this pressure sensor is based on the change in electrical resistance caused by the contact/non-contact of the CNT tip on the surface of the pores under pressure. The mechanical and electrical properties of the CPCSs could be quantitatively controlled by adjusting the concentration of CNTs. The fabricated flexible pressure sensor showed linear sensitivity and excellent performance with regard to repeatability, hysteresis, and reliability. Furthermore, we showed that the sensor could be applied for human motion detection, even when attached to curved surfaces.


RSC Advances ◽  
2020 ◽  
Vol 10 (44) ◽  
pp. 26188-26196 ◽  
Author(s):  
Xiaojun Chen ◽  
Xitong Lin ◽  
Deyun Mo ◽  
Xiaoqun Xia ◽  
Manfeng Gong ◽  
...  

Bionic electronic skin with human sensory capabilities has attracted extensive research interest, which has been applied in the fields of medical health diagnosis, wearable electronics, human–computer interaction, and bionic prosthetics.


2019 ◽  
Vol 7 (4) ◽  
pp. 1022-1027 ◽  
Author(s):  
Tongkuai Li ◽  
Longlong Chen ◽  
Xiang Yang ◽  
Xin Chen ◽  
Zhihan Zhang ◽  
...  

High-performance pressure sensors have attracted considerable attention recently due to their promising applications in touch displays, wearable electronics, human–machine interfaces, and real-time physiological signal perception.


2018 ◽  
Vol 284 ◽  
pp. 260-265 ◽  
Author(s):  
Mengdi Xu ◽  
Yang Gao ◽  
Guohui Yu ◽  
Cong Lu ◽  
Jianping Tan ◽  
...  

2019 ◽  
Vol 11 (45) ◽  
pp. 42594-42606 ◽  
Author(s):  
Xiaoyu Chen ◽  
Hu Liu ◽  
Yanjun Zheng ◽  
Yue Zhai ◽  
Xianhu Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document